[1] |
AMOURI A, ALAPARTHY V T, MORGERA S D. A Machine Learning Based Intrusion Detection System for Mobile Internet of Things[J]. Sensors, 2020, 20(2):461-476.
doi: 10.3390/s20020461
URL
|
[2] |
GAMAGE S, SAMARABANDU J. Deep Learning Methods in Network Intrusion Detection: A Survey and an Objective Comparison[J]. Journal of Network and Computer Applications, 2020, 169(1):767-788.
|
[3] |
BHUYAN M H, BHATTACHARYYA D K, KALITA J K. Network Anomaly Detection: Methods, Systems and Sztools[J]. IEEE Communications Surveys Tutorials, 2014, 16(1):303-336.
doi: 10.1109/SURV.2013.052213.00046
URL
|
[4] |
ZHANG G P. Neural Networks for Classification: A Survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2000, 30(4):451-462.
doi: 10.1109/5326.897072
URL
|
[5] |
YIN Chuanlong, ZHU Yuefei, FEI Jinlong, et al. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks[J]. IEEE Access, 2017, 17(5):21954-21961.
|
[6] |
ZHANG Yong, XU Chen, JIN Lei, et al. Network Intrusion Detection: Based on Deep Hierarchical Network and Original Flow Data[J]. IEEE Access, 2019, 10(7):37004-37016.
|
[7] |
LI Zhipeng, QIN Zheng, HUANG Kai, et al. Intrusion Detection Using Convolutional Neural Networks for Representation Learning[C]//ICONIP. 24th International Conference on Neural Information Processing, November 14-18, 2017, Guangzhou, China. Berlin: Springer, Cham, 2017: 858-866.
|
[8] |
SABOUR S, FROSST N, HINTON G E. Dynamic Routing Between Capsules[C]//NIPS. Proceedings of the 31st International Conference on Neural Information Processing Systems, December 4-9, 2017, California, USA. New York: NIPS Proceeding, 2017: 3856-3866.
|
[9] |
YANG Jucheng, HAN Shujie, MAO Lei, et al. Overview of Capsule Network Model[J]. Journal of Shandong University (Engineering Science Edition), 2019, 49(6):1-10.
|
|
杨巨成, 韩书杰, 毛磊, 等. 胶囊网络模型综述[J]. 山东大学学报(工学版), 2019, 49(6):1-10.
|
[10] |
ZHU Zhangli, RAO Yuan, WU Yuan, et al. Research Progress of Attention Mechanism in Deep Learning[J]. Journal of Chinese Information Processing, 2019, 33(6):1-11.
|
|
朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6):1-11.
|
[11] |
DZMITRY B, KYUNGHYUN C, YOSHUA B. Neural Machine Translation by Jointly Learning to Align and Translate[EB/OL]. https://arxiv.org/abs/1409.0473, 2021-01-26.
|
[12] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale[EB/OL]. https://arxiv.org/abs/2010, 2021-02-20.
|
[13] |
YAO-HUNG H T, NITISH S, HANLIN G, et al. Capsules with Inverted Dot-product Attention Routing[EB/OL]. https://arxiv.org/abs/2002.04764, 2021-03-26.
|
[14] |
WANG Qian, WANG Cheng, FENG Zhenyuan, et al. Summary of K-means Clustering Algorithm Research[J]. Electronic Design Engineering, 2012, 20(7):21-24.
|
|
王千, 王成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7):21-24.
|
[15] |
UNB. NSL-KDD[EB/OL]. https://www.unb.ca/cic/datasets/nsl, 2021-03-28.
|
[16] |
UNB. CICIDS 2017[EB/OL]. https://www.unb.ca/cic/datasets/ids-2017, 2021-03-29.
|
[17] |
TAVALLAEE M, BAGHERI E, LU W, et al. A Detailed Analysis of the KDD CUP 99 Data Set[C]//IEEE. Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and Defense Applications, July 8-10, 2009, Ottawa, Canada. Piscataway: IEEE, 2009: 53-58.
|