[1] |
TAHAEI H, AFIFI F, ASEMI A, et al. The Rise of Traffic Classification in IoT Networks: A survey[J]. Journal of Network and Computer Applications, 2020, 154(1): 102538-102558.
doi: 10.1016/j.jnca.2020.102538
URL
|
[2] |
REN Jingjing, DUBOIS D J, CHOFFNES D, et al. Information Exposure From Consumer IoT Devices: A Multidimensional, Network-informed Measurement Approach [C]//Association for Computing Machinery. In Proceedings of the Internet Measurement Conference (IMC’19), October 21-23, 2019, New York, NY, USA. New York: ACM, 2019: 267-279.
|
[3] |
SHAHID M R, BLANC G, ZHANG Zonghua, et al. IoT Devices Recognition Through Network Traffic Analysis [C]//IEEE. 2018 IEEE International Conference on Big Data (Big Data), December 10-13, 2018, Seattle, WA, USA. Seattle: IEEE, 2018: 5187-5192.
|
[4] |
KOHNO T, BROIDO A, CLAFFY K C, et al. Remote Physical Device Fingerprinting[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(2): 93-108.
doi: 10.1109/TDSC.2005.26
URL
|
[5] |
SIVANATHAN A, SHERRATT D, GHARAKHEILI H H, et al. Characterizing and Classifying IoT Traffic in Smart Cities and Campuses [C]//IEEE. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), May 1-4, 2017, Atlanta, GA, USA. Atlanta: IEEE, 2017: 559-564.
|
[6] |
MIETTINEN M, MARCHAL S, HAFEEZ I, et al. IoT Sentinel Demo: Automated Device-type Identification for Security Enforcement in IoT [C]//IEEE. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), June 5-8, 2017, Atlanta, GA, USA. Atlanta: IEEE, 2017: 2511-2514.
|
[7] |
MEIDAN Y, BOHADANA M, SHABTAI A, et al. Detection of Unauthorized IoT Devices Using Machine Learning Techniques[EB/OL]. https://arxiv.org/abs/1709.04647, 2017-09-14.
|
[8] |
NGUYEN-AN H, SILVERSTON T, YAMAZAKI T, et al. IoT Traffic: Modeling and Measurement Experiments[J]. IoT, 2021, 2(1): 140-162.
doi: 10.3390/iot2010008
URL
|
[9] |
BAI Lei, YAO Lina, KANHERE S S, et al. Automatic Device Classification from Network Traffic Streams of Internet of Things [C]//IEEE. 2018 IEEE 43rd Conference on Local Computer Networks (LCN), October 1-4, 2018, Chicago, IL, USA. Chicago: IEEE, 2018: 1-9.
|
[10] |
LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network Traffic Classifier With Convolutional and Recurrent Neural Networks for Internet of Things[J]. IEEE Access, 2017, 5(1): 18042-18050.
doi: 10.1109/Access.6287639
URL
|
[11] |
YAO Haipeng, GAO Pengcheng, WANG Jingjing, et al. Capsule Network Assisted IoT Traffic Classification Mechanism for Smart Cities[J]. IEEE Internet of Things Journal, 2019, 6(5): 7515-7525.
doi: 10.1109/JIOT.2019.2901348
|
[12] |
FAN Linna, ZHANG Shize, WU Yichao, et al. An IoT Device Identification Method based on Semi-supervised Learning [C]//IEEE. 2020 16th International Conference on Network and Service Management (CNSM), November 2-6, 2020, Izmir, Turkey. Izmir: IEEE, 2020: 1-7.
|
[13] |
ORTIZ J, CRAWFORD C, LE F. DeviceMien: Network Device Behavior Modeling for Identifying Unknown IoT Devices [C].//ACM. In Proceedings of the International Conference on Internet of Things Design and Implementation (IoTDI’19), April 15-18, 2019, Montreal, Quebec, Canada. New York: Association for Computing Machinery, 2019: 106-117.
|
[14] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017-04-17.
|
[15] |
KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing Neural Networks [C]//ACM. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), December 4-9, 2017, Long Beach, California, USA. Red Hook: Curran Associates Inc, 2017: 972-981.
|