[1] |
LIU Xingbin, YANG Jianhua, XIE Gaogang, et al. Automated-mining of Packet Signatures for Traffic Identification at Application Layer with Apriori Algorithm[J]. Journal on Communications, 2009, 29(12):51-59.
|
[2] |
ZHAO Shuang, CHEN Shuhui. Review: Traffic Identification Based on Machine Learning[J]. Computer Engineering and Science, 2018, 40(10):1746-1756.
|
|
赵双, 陈曙晖. 基于机器学习的流量识别技术综述与展望[J]. 计算机工程与科学, 2018, 40(10):1746-1756.
|
[3] |
LIU Xingbin, YANG Jianhua, XIE Gaogang, et al. Automated Mining of Packet Signatures for Traffic Identification at Application Layer with Apriori Algorithm[J]. Journal on Communications, 2008, 29(12):51-59.
|
|
刘兴彬, 杨建华, 谢高岗, 等. 基于Apriori算法的流量识别特征自动提取方法[J]. 通信学报, 2008, 29(12):51-59.
|
[4] |
AHMED M, MAHMOOD A N, HU Jiankun. A Survey of Network Anomaly Detection Techniques[J]. Journal of Network and Computer Applications, 2016, 60(C):19-31.
doi: 10.1016/j.jnca.2015.11.016
URL
|
[5] |
MOORE A W, ZUEV D. Internet Traffic Classification Using Bayesian Analysis Techniques[C]// ACM. The 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, June 6-10, 2005, Banff, Alberta, Canada. New York: ACM, 2005: 50-60.
|
[6] |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[C]// INSTICC. 4th International Conference on Information Systems Security and Privacy (ICISSP), October 22-24, 2018, Funchal, Portugal. Berlin: Springer, 2018: 172-188.
|
[7] |
NASEER S, SALEEM Y, KHALID S, et al. Enhanced Network Anomaly Detection Based on Deep Neural Networks[J]. IEEE Access, 2018, 6(8):48231-48246.
doi: 10.1109/ACCESS.2018.2863036
URL
|
[8] |
WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware Traffic Classification Using Convolutional Neural Network for Representation Learning[C]// IEEE. 2017 International Conference on Information Networking, January 11-13, Da Nang, Vietnam. NJ: IEEE, 2017: 712-717.
|
[9] |
LECUN Y, JACKEL L, BOTTOU L, et al. Learning Algorithms for Classification: A Comparison on Handwritten Digit Recognition[C]// CTP-PBSRI. The CTP-PBSRI Joint Workshop on Theoretical Physics, February 2-4, 1995, Pohang, Korea. Singapore: World Science, 1995: 261-276.
|
[10] |
LIANG Jie, CHEN Jiahao, ZHANG Xueqin, et al. One-hot Encoding and Convolutional Neural Network-based Anomaly Detection[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7):523-529.
|
|
梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7):523-529.
|
[11] |
ZHANG Yansheng, LI Xiwang, LI Dan, et al. Abnormal Flow Monitoring of Industrial Control Network Based on Convolutional Neural Network[J]. Journal of Computer Applications, 2019, 39(5):1512-1517.
|
|
张艳升, 李喜旺, 李丹, 等. 基于卷积神经网络的工控网络异常流量检测[J]. 计算机应用, 2019, 39(5):1512-1517.
|
[12] |
RADFORD B J, APOLONIO L M, TRIAS A J, et al. Network Traffic Anomaly Detection Using Recurrent Neural Networks[EB/OL]. https://arxiv.org/pdf/1803.10769v1.pdf, 2020-11-25.
|
[13] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[EB/OL]. https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289g-winter2018/alexnet.pdf, 2020-11-25.
|
[14] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. NJ: IEEE, 2016: 770-778.
|
[15] |
SHI Baoguang, BAI Xiang, YAO Cong. An End-to-end Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11):2298-2304.
doi: 10.1109/TPAMI.2016.2646371
URL
|
[16] |
WANG Yequan, HUANG Minlie, ZHU Xiayan, et al. Attention-based LSTM for Aspect-level Sentiment Classification[C]// EMNLP. The 2016 Conference on Empirical Methods in Natural Language Processing, November 1-4, 2016, Austin, Texas, USA. Cambridge: The Association for Computational Linguistics, 2016: 606-615.
|
[17] |
HINTON G, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving Neural Networks by Preventing Co-adaptation of Feature Detectors[EB/OL]. https://www.researchgate.net/publication/228102719_Improving_neural_networks_by_preventing_co-adaptation_of_feature_detectors, 2020-11-28.
|
[18] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
|