Netinfo Security ›› 2019, Vol. 19 ›› Issue (6): 68-75.doi: 10.3969/j.issn.1671-1122.2019.06.009
Previous Articles Next Articles
Received:
2019-04-01
Online:
2019-06-10
Published:
2020-05-11
CLC Number:
Guanheng CHEN, Jinshu SU. Abnormal Traffic Detection Algorithm Based on Deep Neural Network[J]. Netinfo Security, 2019, 19(6): 68-75.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.06.009
DARPA | KDD99 | CAIDA | kyoto | ADFA2013 | ISCX2012 | ||
---|---|---|---|---|---|---|---|
网络配置的完整性 | 完整 | 完整 | 完整 | 完整 | 完整 | 完整 | |
流量完整性 | 不完整 | 不完整 | 完整 | 不完整 | 完整 | 完整 | |
数据集标记 | 是 | 是 | 否 | 是 | 是 | 是 | |
交互完整性 | 完整 | 完整 | 不完整 | 完整 | 完整 | 完整 | |
捕获完整性 | 完整 | 完整 | 不完整 | 完整 | 完整 | 完整 | |
可用 协议 类型 | HTTP | 可用 | 可用 | - | 可用 | 可用 | 可用 |
HTTPS | 不可用 | 不可用 | - | 可用 | 不可用 | 可用 | |
SSH | 可用 | 可用 | - | 可用 | 可用 | 可用 | |
FTP | 可用 | 可用 | - | 可用 | 可用 | 可用 | |
可用 | 可用 | - | 可用 | 可用 | 可用 | ||
攻击 类型 多样性 | Browser | 不包含 | 不包含 | 不包含 | 包含 | 包含 | 包含 |
Bforce | 包含 | 包含 | 不包含 | 包含 | 包含 | 包含 | |
DoS | 包含 | 包含 | 包含 | 包含 | 不包含 | 包含 | |
Scan | 包含 | 包含 | 包含 | 包含 | 不包含 | 包含 | |
Bdoor | 不包含 | 不包含 | 不包含 | 包含 | 包含 | 包含 | |
DNS | 不包含 | 不包含 | 包含 | 包含 | 不包含 | 不包含 | |
其他 | 包含 | 包含 | 包含 | 包含 | 包含 | 包含 | |
异构型 | 不具有 | 不具有 | 不具有 | 不具有 | - | 具有 |
[1] | HORNG S J, SU Mingyang, CHEN Y H, et al.A Novel Intrusion Detection System Based on Hierarchical Clustering and Support Vector Machines[J]. Expert Systems with Applications, 2011, 38(1): 306-313. |
[2] | BOSER B E, GUYON I M, VAPNIK V N.A Training Algorithm for Optimal Margin Classifiers[C]//ACM. The 5th Annual ACM Workshop on Computational Learning Theory, July 27-29, Pittsburgh, Pennsylvania, USA. New York: ACM, 1992: 144-152. |
[3] | ALAZAB A, HOBBS M, ABAWAJY J, et al.Using Response Action with Intelligent Intrusion Detection and Prevention System against Web Application Malware[J]. Information Management & Computer Security, 2014, 22(5): 431-449. |
[4] | AVCI E, COTELI R.A New Automatic Target Recognition System Based on Wavelet Extreme Learning Machine[J]. Expert Systems with Applications, 2012, 39(16): 12340-12348. |
[5] | BUCZAK A L, GUVEN E.A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1153-1176. |
[6] | LAI Haiguang, CAI Shengwen, HUANG Hao, et al.A Parallel Intrusion Detection System for High-speed Networks[M]//Springer. Applied Cryptography and Network Security. Heidelberg: Springer, Berlin, Heidelberg, 2004: 439-451. |
[7] | FENG Yong, WU Zhongfu, WU Kaigui, et al.An Unsupervised Anomaly Intrusion Detection Algorithm Based on Swarm Intelligence[C]//IEEE. 2005 International Conference on Machine Learning and Cybernetics, August 18-21, 2005 , Guangzhou, China.NJ: IEEE, 2005: 3965-3969. |
[8] | LEE S W, VERRI A.Pattern Recognition with Support Vector Machines[M]. Berlin : Springer-Verlag, Berlin, 2002. |
[9] | MASUD M, GAO J, KHAN L, et al.Mining Concept-drifting Data Stream to Detect Peer-to-peer Botnet Traffic[C]// IEEE. 2008 International Conference on Intelligence and Security Informatics, June 17-20, 2008, Taipei, China. NJ: IEEE, 2008: 29-30. |
[10] | YU Xiaocong, DONG Xiaomei, YU Ge, et al.Online Botnet Detection Based on Incremental Discrete Fourier Transform[J]. Journal of Networks, 2010, 5(5): 568-576. |
[11] | FEILY M, SHAHRESTANI A, RAMADASS S.A Survey of Botnet and Botnet Detection[C]//IEEE. The Third International Conference on Emerging Security Information, Systems and Technologies, June 18-23, 2009, Athens, Glyfada, Greece. NJ: IEEE, 2009: 268-73. |
[12] | SUN Yongjia, YUAN Ye, WANG G.An On-line Sequential Learning Method in Social Networks for Node Classification[J]. Neurocomputing, 2015, 149: 207-214. |
[13] | CHENG Chi, TAY W P, HUANG Guangbin.Extreme Learning Machines for Intrusion Detection[C]//IEEE. The 2012 International Joint Conference on Neural Networks, June 10-15, 2012, Brisbane, QLD, Australia. NJ: IEEE, 2012: 1-8. |
[14] | MCHUGH J.Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory[J]. ACM Transactions on Information and System Security , 2000, 3(4): 262-294. |
[15] | BROWN C, COWPERTHWAITE A, HIJAZI A, Analysis of the 1999 DARPA/Lincoln Laboratory IDS Evaluation Data with NetADHICT[C]//IEEE. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, July 8-10, 2009 , Ottawa, ON, Canada . NJ: IEEE, 2009: 1-7. |
[16] | KDD Cup 1999 Data [EB/OL]. , 2019-3-15. |
[17] | TAVALLAEE M, BAGHERI E, LU Wei, et al. A Detailed Analysis of the KDD CUP 99 Data Set[C]//IEEE.2019 IEEE Symposium on Computational Intelligence for Security and Defense Applications, July 8-10, 2009, Ottawa, ON, Canada. NJ: IEEE: 1-6. |
[18] | CAIDA. The CAIDA Anonymized Internet Traces Dataset 2008- Ongoing [EB/OL]. , 2019-3-15. |
[19] | CAIDA. CAIDA DDoS Attack Dataset[EB/OL]. , 2019-3-15. |
[20] | CAIDA. CAIDA Anonymized Internet Traces 2016 Dataset [EB/OL]. ,2019-3-15. |
[21] | SONG J, TAKAKURA H, OKABE Y, et al.Statistical Analysis of Honeypot Data and Building of Kyoto 2006+ Dataset for NIDS Evaluation[C]//ACM. The First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, April 10 , 2011 , Salzburg, Austria . New York: ACM, 2011: 29-36. |
[22] | SATO M, YAMAKI H, TAKAKURA H.Unknown Attacks Detection Using Feature Extraction from Anomaly-based IDS Alerts[C]//IEEE. 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet, July 16-20 , 2012, Izmir, Turkey. NJ: IEEE, 2012: 273-277. |
[23] | CHITRAKAR R, HUANG Chuanhe.Anomaly Based Intrusion Detection Using Hybrid Learning Approach of Combining k-Medoids Clustering and Naive Bayes Classification[C]//IEEE. 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing, September 21-23, 2012, Shanghai, China. NJ: IEEE, 2012: 1-5. |
[24] | CREECH G, HU Jianhun.Generation of a New IDS Test Dataset: Time to Retire the KDD Collection[C]//IEEE. 2013 IEEE Wireless Communications and Networking Conference, April 7-10, 2013, Shanghai, China. NJ: IEEE, 2013: 4487-4492. |
[25] | XIE Miao, HU Jiankun.Evaluating Host-based Anomaly Detection Systems: A Preliminary Analysis of ADFA-LD[C]//IEEE. 2013 6th International Congress on Image and Signal Processing, December 16-18, 2013, Hangzhou, China. NJ: IEEE, 2013: 1711-1716. |
[26] | XIE Miao, HU Jiankun, SLAY J.Evaluating Host-based Anomaly Detection Systems: Application of the One-class SVM Algorithm to ADFA-LD[C]//IEEE. 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery, August 19-21, 2014 , Xiamen, China. NJ: IEEE, 2014: 978-982. |
[27] | HE Xiang, LIU Sheng, JIANG Jiguo.Comparative Study of Intrusion Detection Methods Based on Machine Learning[J]. Netinfo Security, 2018, 18(5): 1-11. |
和湘,刘晟,姜吉国.基于机器学习的入侵检测方法对比研究[J].信息网络安全,2018,18(5):1-11. | |
[28] | UNB. Intrusion Detection Evaluation Dataset (ISCXIDS2012) [EB/OL]. , 2019-3-15. |
[29] | YASSIN W, UDZIR1 N I, MUDA Z, et al. Anormaly-based Intrusion Detection through K-Means Clustering and Naivesbayes Classification[C]// ICOCI. The 4th International Conference on Computing and Informatics, August 28-30, 2013 , Sarawak, Malaysia. Universiti Utara Malaysia, 2013: 298-303. |
[30] | CHEN Hongsong, WANG Gang, SONG Jianlin.Research on Anomaly Behavior Classification Algorithm of Internal Network User Based on Cloud Computing Intrusion Detection Data Set[J]. Netinfo Security, 2018, 18(3): 1-7. |
陈红松,王钢,宋建林.基于云计算入侵检测数据集的内网用户异常行为分类算法研究[J].信息网络安全,2018,18(3):1-7. |
[1] | Tengfei WANG, Manchun CAI, Tianliang LU, Ting YUE. IPv6 Network Attack Source Tracing Method Based on iTrace_v6 [J]. Netinfo Security, 2020, 20(3): 83-89. |
[2] | Hao ZHANG, Long CHEN, Zhiqiang WEI. Abnormal Traffic Detection Technology Based on Data Augmentation and Model Update [J]. Netinfo Security, 2020, 20(2): 66-74. |
[3] | Wei DONG, Yonggang LI. Research on Analysis of Attacks on Smart Grid Network Based on Complex Network [J]. Netinfo Security, 2020, 20(1): 52-60. |
[4] | CHEN Liangchen, LIU Baoxu, GAO Shu. Research on Traffic Data Sampling Technology in Network Attack Detection [J]. Netinfo Security, 2019, 19(8): 22-28. |
[5] | Jianming FU, Lin LI, Rui ZHENG, Suriguga. Survey of Network Attack Detection Based on GAN [J]. Netinfo Security, 2019, 19(2): 1-9. |
[6] | GUO Min, ZENG Yingming, YAO Jinli, DA Xiaowen. The Analysis of Software Behavior Security Based on Big Data Samples [J]. 信息网络安全, 2017, 17(9): 153-156. |
[7] | XU Yan. Research on Network Link Prediction Based on Data Mining [J]. 信息网络安全, 2017, 17(6): 30-34. |
[8] | ZHANG Tengfei, ZHANG Qian, LIU Jiayong. URL Classification Method Based on AdaBoost and Bayes Algorithm [J]. 信息网络安全, 2017, 17(3): 66-71. |
[9] | XIA Yuming, HU Shaoyong, ZHU Shaomin, LIU Lili. Research on the Method of Network Attack Detection Based on Convolution Neural Network [J]. 信息网络安全, 2017, 17(11): 32-36. |
[10] | LV Xin, GUO Yan-qing, YANG Yue-yuan. Study on Evaluation of the Important Information System Security Safeguard Capability [J]. 信息网络安全, 2014, 14(9): 22-25. |
[11] | LU Tian-liang, ZHOU Yun-wei, CAO Wei. Analysis of Attack Techniques and Crime Methods of the Mobile Internet [J]. 信息网络安全, 2014, 14(9): 176-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||