Netinfo Security ›› 2016, Vol. 16 ›› Issue (10): 80-88.doi: 10.3969/j.issn.1671-1122.2016.10.013
• Orginal Article • Previous Articles
Received:
2016-09-01
Online:
2016-10-31
Published:
2020-05-13
CLC Number:
Jiaping LIN, Hui LI. Review of Android Malware Detection[J]. Netinfo Security, 2016, 16(10): 80-88.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2016.10.013
[1] | 安卓ROM基地. 如何整治手机恶意软件?安卓清理大师有妙招[EB/OL]. . |
[2] | 汐元. 可怕:安卓平台每天诞生近5000款恶意程序[EB/OL]. . |
[3] | 网易科技报道. 每5个安卓应用有1个恶意软件[EB/OL]. . |
[4] | Symantec. AndroidOS.Fakeplayer[EB/OL]. https://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99, 2016-8-1. |
[5] | CASTILLO C. A. Android malware past, present,future[EB/OL]. . |
[6] | Spitm, Zitmo. Banking Trojans Target Android[EB/OL]. https://blogs.mcafee.com/mcafee-labs/spitmo-vs-zitmo-banking-trojans-target-android, 2016-8-1. |
[7] | 百度百科. Ginger Break [EB/OL]. . |
[8] | ZHOU Y, JIANG X.Dissecting Android Malware: Characteriza-tion and Evolution[C] // IEEE. IEEE Symposium on Security and Privacy, May 20-23, 2012, San Francisco Bay Area, California, USA. New Jersey: IEEE, 2012 : 95-109. |
[9] | Backdoor. AndroidOS. Obad.a [EB/OL]. . |
[10] | 天极新闻. 如何整治手机恶意软件?安卓清理大师有妙招 [EB/OL]. . |
[11] | ZHOU W, ZHOU Y, JIANG X, et al.Detecting Repackaged Smartphone Applications in Third-party Android Marketplaces[C] // ACM. Second ACM Conference on Data and Application Secu-rity and Privacy. Feberary 7-9, 2012. San Antonio, TX, USA. New York: ACM, 2012: 317-326. |
[12] | Intel Security. ‘Android/NotCompatible’ Looks Like Piece of PC Botnet [EB/OL]. https://blogs.mcafee.com/mcafee-labs /androidnotcompatible-looks-like-piece-of-pc-botnet/, 2016-8-1. |
[13] | CSDN. Androguard的使用方法[EB/OL]. . |
[14] | CSDN. APKTOOL的使用心得 [EB/OL]. . |
[15] | 开源中国社区. dex2jar [EB/OL]. . |
[16] | Linux中国. TaintDroid项目笔记 [EB/OL]. https://linux.cn/ article-2361-1.html, 2016-8-1. |
[17] | IDREES F, RAJARAJAN M.Investigating the Android Intents and Permissions for Malware Detection[C] // IEEE. IEEE 10th International Conference on Wireless and Mobile Computing, October 8-10, 2014, WiMob, Larnaca, Cyprus, New Jersey: IEEE, 2014: 354-358. |
[18] | LIANG S, DU X.Permission-Combination-based Scheme for Android Mobile Malware Detection[C] // IEEE. IEEE Interna-tional Conference on Communications (ICC), June 10-14, 2014, Sydney, Australia, New Jersey: IEEE, 2014 : 2301-2306. |
[19] | FENG Y, ANAND S, DILLIG I, et al.Apposcopy: Seman-tics-Based Detection of Android Malware through Static Analysis[C] // ACM. Proceedings of the 22nd ACM SIGSOFT Interna-tional Symposium on Foundations of Software Engineering.(FSE-22). November 16-22, 2014. Hong Kong, China. New York: ACM, 2014: 576-587. |
[20] | CHIN E, FELT A P, GREENWOOD K, et al.Analyzing In-ter-application communication in Android[C] // ACM. Proceed-ings of the 9th International Conference on Mobile Systems, Ap-plications, and Services. June 28-July 01, 2011. Bethesda, MD, USA. New York: ACM, 2011: 239-252. |
[21] | FUCHS A P, CHAUDHURI A, FOSTER J S. SCanDroid: Auto-mated Security Certification of Android Applications[EB/OL]. . |
[22] | LU L, LI Z, WU Z, et al.CHEX: Statically Vetting Android Apps for Component Hijacking Vulnerabilities[C] // ACM. the ACM Conference on Computer and Communications Security, October 16-18, 2012, Raleigh, NC, USA. New York: ACM, 2012 : 229-240. |
[23] | MICHAEL G, ZHOU Y, ZHANG Q, et al.Riskranker: Scalable and Accurate Zero-day Android Malware Detection[C] // ACM. The 10th International Conference on Mobile Systems, Applica-tions and Services, June 25-29, 2014, Ambleside, United Kingdom. New York: ACM, 2012: 281-294. |
[24] | KARLSEN H S, WOGNSEN E R, OLESEN M C, Hansen RR. Study, Formalisation, Analysis of Dalvik Bytecode[EB/OL]. . |
[25] | PROTSENKO M, MULLER T. Android Malware Detection Based on Software Complexity Metrics[EB/OL]. . |
[26] | SEDANO J, CHIRA C, GONZALEZ S, et al. On the Selection of Key Features for Android Malware Characterization [EB/OL]. . |
[27] | SHABTAI A, KANONOV U, ELOVICI Y, et al.Andromaly: A Behavioral Malware Detection Framework for Android Devices[J]. Journal of Intelligent Information Systems, 2012, 38(1): 161-190. |
[28] | REINA A, FATTORI A, CAVALLARO L. A System Call-Centric Analysis and Stimulation Technique to Automatically Reconstruct Android Malware Behaviors [EB/OL]. . |
[29] | DAMOPOULOS D, KAMBOURAKIS G, PORTOKALIDIS G.The Best of Both Worlds: A Framework for the Synergistic Ope-ration of Host and Cloud Anomaly-based IDS for Smartphones[C]// ACM. Proceedings of the Seventh European Workshop on Sys-tem Security, April 13, 2014, Amsterdam, The Netherlands. New York: ACM, 2014: 61-66. |
[30] | YAN L K, YIN H. DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis [EB/OL]. https://www.usenix.org/conference/usenix se-curity12/technical-sessions/presentation/yan, 2016-8-1. |
[31] | BURGUERA I, ZURUTUZA U, NADJM-TEHRANI S.Crowdroid: Behavior-Based Malware Detection System for An-droid[C]// ACM. Proceedings of the 1st ACM Workshop Securi-ty and Privacy in Smartphones and Mobile Devices, Co-located with CCS 2011, October 17, 2011, Chicago, USA. New York: ACM, 2011: 15-26. |
[32] | ENCK W, GILBERT P, HAN S, et al.TaintDroid: An Informa-tion-Flow Tracking System for Realtime Privacy Monitoring on Smartphones[J]. ACM Transactions on Computer Systems (TOCS), 2014( 5):1-5. |
[33] | LI S, CHEN J, SPYRIDOPOULOS T, et al. Real-Time Monito-ring of Privacy Abuses and Intrusion Detection in Android Sys-tem[EB/OL].. |
[34] | WANG D, DAI S, DING Y, et al.POSTER: AdHoneyDroid-Capture Malicious Android Advertisements[C]// ACM. Procee-dings of ACM Conference on Computer and Communications Security, 2014, Scottsdale, Arizona, USA. New York: ACM, 2014 : 1514-1516. |
[35] | ANDRIATSIMANDEFITRA R, TONG V V T. Capturing An-droid Malware Behaviour Using System Flow Graph[EB/OL]. . |
[36] | MAIER D, MULLER T, PROTSENKO M.Divide-and-Conquer: Why Android Malware Cannot Be Stopped[C] // IEEE,the Ninth International Conference on Availability, Reliability and Securi-ty(ARES), September 8-12, 2014, Fribourg, Switzerland. New Jersey: IEEE, 2014 : 30-39. |
[37] | ZHAO S, LI X, XU G, et al.Attack Tree Based Android Malware Detection with Hybrid Analysis[C]// IEEE. The 13th IEEE In-ternational Conference on Trust, Security and Privacy in Compu-ting and Communications(TrustCom), September 24-26, 2014, Beijing, China. New Jersey: IEEE, 2014: 380-387. |
[38] | SPREITZENBARTH M, SCHRECK T, ECHTLER F, et al.Mo-bile-Sandbox: Combining Static and Dynamic Analysis with Ma-chine-learning Techniques[J]. International Journal of Information Security, 2015, 14(2): 141-153. |
[39] | LOCKHEIMER H. Android and Security [EB/OL]. . |
[40] | PETSAS T, VOYATZIS G, ATHANASOPOULOS E, et al.Rage Against the Virtual Machine: Hindering Dynamic Analysis of An-droid Malware[C]// ACM. Proceedings of the Seventh European Workshop on System Security(EuroSec), April 13, 2014, Amster-dam, The Netherlands. New York: ACM, 2014: 51-56. |
[41] | CodePainters. Android: IMEI Number and the Emulator [EB/OL]. https://codepainters.wordpress.com/2009/12/11/android-imei-number-and-the-emulator/, 2016-8-1. |
[42] | Google. Sensor Simulaor[EB/OL] . |
[43] | GOMEZ L, NEAMTIU I, AZIM T, et al.RERAN: Timing- and Touch-Sensitive Record and Replay for Android[C]// IEEE. 35th International Conference on Software Engineering (ICSE), May 18-26, 2013, San Francisco, CA, USA. New Jersey: IEEE, 2013: 72-81. |
[44] | ARM. Virtualization Extensions [EB/OL]. . |
[45] | MAIORCA D, ARIU D, CORONA I, et al.Stealth Attacks: An Extended Insight into the Obfuscation Effects on Android Malwa-re[J]. Computers & Security, 2015(51): 16-31. |
[46] | LIU X, LIU J.A Two-layered Permission-based Android Malware Detection Scheme[C]// IEEE. 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, Mobile-Cloud, April 8-11, 2014, Oxford, United Kingdom. New Jersey: IEEE, 2014: 142-148. |
[47] | WEKA, The University of Waikato. Weka 3: Data Mining Sof-tware in Java [EB/OL]. . |
[48] | YU W, GE L, XU G, et al. Towards Neural Network Based Mal-ware Detection on Android Mobile Devices[EB/OL]. . |
[49] | PEHLIVAN U, BALTACI N, ACARTURK C, et al.The Analysis of Feature Selection Methods and Classification Algorithms in Permission Based Android Malware Detection[C]// IEEE. IEEE Symposium on Computational Intelligence in Cyber Security (CICS), December 9-12, 2014, Orlando, FL, USA. New Jersey: IEEE, 2014 : 81-88. |
[50] | SHEEN S, ANITHA R, NATARAJAN V.Android Based Mal-ware Detection Using a Multifeature Collaborative Decision Fusion Approach[J]. Neurocomputing, 2015( 151): 905-912. |
[51] | YERIMA S Y, SEZER S, MUTTIK I.Android Malware Detection Using Parallel Machine Learning Classifiers[C]// IEEE. Eighth International Conference on Next Generation Mobile Apps, Ser-vices and Technologies, September 10-12, 2014, University of Oxford, UK. New Jersey: IEEE, 2014: 37-42. |
[52] | ANDOOR J T. A Filtering Based Android Malware Detection System for Google PlayStore [EB/OL]. . |
[53] | CEN L, GATES C S, SI L, et al.A Probabilistic Discriminative Model for Android Malware Detection with Decompiled Source Code[J]. IEEE Transactions on Dependable and Secure Compu-ting, 2015, 12(4): 400-412. |
[54] | AFONSO V M, de Amorim M F, Gregio A R A, et al. Identifying Android Malware Using Dynamically Obtained Features[J]. Journal of Computer Virology and Hacking Techniques, 2015, 11(1): 9-17. |
[55] | AAFER Y, DU W, YIN H. DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android[EB/OL]. . |
[1] | Rong WANG, Chunguang MA, Peng WU. An Intrusion Detection Method Based on Federated Learning and Convolutional Neural Network [J]. Netinfo Security, 2020, 20(4): 47-54. |
[2] | Lingyu BIAN, Linlin ZHANG, Kai ZHAO, Fei SHI. Ethereum Malicious Account Detection Method Based on LightGBM [J]. Netinfo Security, 2020, 20(4): 73-80. |
[3] | Zhiyan ZHAO, Xiaomo JI. Research on the Intelligent Fusion Model of Network Security Situation Awareness [J]. Netinfo Security, 2020, 20(4): 87-93. |
[4] | Zhaojun GU, Yitong REN, Chunbo LIU, Zhi WANG. Intranet Log Anomaly Detection Model Based on Conformal Prediction [J]. Netinfo Security, 2020, 20(3): 45-50. |
[5] | Wenhua LUO, Caidian XU. Network Intrusion Detection Based on Improved MajorClust Clustering [J]. Netinfo Security, 2020, 20(2): 14-21. |
[6] | Zongping LÜ, Chundi ZHAO, Zhaojun GU, Jingxian ZHOU. Dynamic Detection of Ransomware Based on Stacking Model Fusion [J]. Netinfo Security, 2020, 20(2): 57-57. |
[7] | Hao ZHANG, Long CHEN, Zhiqiang WEI. Abnormal Traffic Detection Technology Based on Data Augmentation and Model Update [J]. Netinfo Security, 2020, 20(2): 66-74. |
[8] | Tao JING, Wei WAN. Research on a P2P Network Communication Behavior Analytical Method for Status Migration Attribute-oriented [J]. Netinfo Security, 2020, 20(1): 16-25. |
[9] | Liuyang HOU, Senlin LUO, Limin PAN, Ji ZHANG. Multi-feature Android Malware Detection Method [J]. Netinfo Security, 2020, 20(1): 67-74. |
[10] | Xiaoran LI, Rong HAO, Jia YU. Certificateless Provable Data Possession with Data Uploading Control [J]. Netinfo Security, 2020, 20(1): 83-88. |
[11] | Xin SONG, Kai ZHAO, Linlin ZHANG, Wenbo FANG. Research on Android Malware Detection Based on Random Forest [J]. Netinfo Security, 2019, 19(9): 1-5. |
[12] | Jian KANG, Jie WANG, Zhengxu LI, Guangda ZHANG. A Model for Anomaly Intrusion Detection with Different Feature Extraction Strategies in IoT [J]. Netinfo Security, 2019, 19(9): 21-25. |
[13] | Like CHEN, Shuhua RUAN, Xingshu CHEN, Haizhou WANG. Research on Intelligent Detection of Social Media Robot Accounts [J]. Netinfo Security, 2019, 19(9): 96-100. |
[14] | Wenying FENG, Xiaobo GUO, Yuanye HE, Cong XUE. Intrusion Detection Model Based on Feedforward Neural Network [J]. Netinfo Security, 2019, 19(9): 101-105. |
[15] | Liangchen CHEN, Baoxu LIU, Shu GAO. Research on Traffic Data Sampling Technology in Network Attack Detection [J]. Netinfo Security, 2019, 19(8): 22-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||