[1] |
BLAKLEY G. Safeguarding Cryptographic Keys[EB/OL]., 2015-9-28.
|
[2] |
SHAMIR A.How to Share a Secret[J]. Communication of ACM, 1979, 22(11): 612-613.
|
[3] |
GUO Y, ZENG G H, CHEN Z G.Multiparty Quantum Secret Sharing of Quantum States with Quantum Registers[J]. Chinese Physics Letters, 2007, 24(4): 863-866.
|
[4] |
GUO Y, HUANG D Z, ZENG G H, et al.Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States[J]. Chinese Physics Letters, 2008, 25(1): 16-19.
|
[5] |
SHI R H, SU Q, GUO Y, et al.Quantum Secret Sharing Based on Chinese Remainder Theorem[J]. Communications in Theoretical Physics, 2011, 55(4): 573-578.
|
[6] |
GUO Y, ZHAO Y.High-efficient Quantum Wecret Wharing Based on the Chinese Remainder Theorem via the Orbital Angular Momentum Entanglement Analysis[J]. Quantum Information Processing, 2013, 12(2): 1125-1139.
|
[7] |
SHI R H, LV G L, WANG Y, et al.On Quantum Secret Sharing via Chinese Remainder Theorem with the Non-maximally Entanglement State Analysis[J]. International Journal of Theoretical Physics, 2013, 52(2): 539-548.
|
[8] |
GAO G.Improvement of Efficient Multiparty Quantum Secret Sharing Based on Bell States and Continuous Variable Operations[J]. International Journal of Theoretical Physics, 2014, 53(7): 2231-2235.
|
[9] |
李元兴,王新梅. 密钥分散管理方案与线性分组码[J]. 通信学报, 1993,14(3): 22-28.
|
[10] |
梅挺,代群,张明. 基于线性分组码的(k, n)门限方案的研究[J]. 通信技术,2008 (11): 288-290.
|
[11] |
郭玉娟,李志慧,赖红. 基于线性码上的动态可验证的秘密共享方案[J]. 陕西师范大学学报(自然科学版),2010,38(4): 7-12.
|
[12] |
宋云,李志慧,李永明. 基于极小线性码上的秘密共享方案[J]. 电子学报,2013,41(2):220-226.
|
[13] |
刘荣香,赖红. 基于线性码上无可信第三方的多秘密共享方案[J]. 青岛科技大学学报(自然科学版), 2014,35(5): 539-542.
|
[14] |
WANG C, DENG F G, LI Y S, et al.Quantum secure direct Communication with High-dimension Quantum Super Dense Coding[J]. Physical Review A, 2005, 71(4): 044305.
|
[15] |
SHI R H, SU Q, GUO Y, et al.The Dining Cryptographer Problem-Based Anonymous Quantum Communication via Non-maximally Entanglement State Analysis[J]. International Journal of Theoretical Physics, 2013, 52(2): 376-384.
|
[16] |
LONG G L, LIU X S.Theoretically Efficient High-capacity Quantum-Key-distribution Scheme[J]. Physical, Review, A, 2002, 65(3): 2302.
|
[17] |
DENG F G, LONG G L, LIU X S.Two-step Quantum Direct Communication Protocol Using the Einstein-Podolsky-Rosen Pair Block[J]. Physical Review A, 2003, 68(4): 113-114.
|
[18] |
HUANG D Z, GUO Y, ZENG G H.Quantum Secure Direct Intercommunication with Super Dense Coding and Entanglement Swapping[J]. Communications in Theoretical Physics, 2008, 50(6): 1290-1294.
|
[19] |
LAI H, XIAO J, ORGUN M A, et al.Quantum Direct Secret Sharing with Efficient Eavesdropping-check and Authentication Based on Distributed Fountain Codes[J]. Quantum information processing, 2014, 13(4): 895-907.
|
[20] |
KARNIN E D, GREEN J W, HELLMAN M E.On Secret Sharing Systems[J]. IEEE Tran. IT, 1983, 24(1): 35-41.
|
[21] |
SHI R H, GUO Y, LEE M H.Quantum Codes Based on Fast Pauli Block Transforms in the Finite Field[J]. Quantum Information Processing, 2010, 9(5): 611-628.
|
[22] |
KAPETANAKIS G.Normal Bases and Primitive Elements over Finite Fields[J]. Finite Fields and Their Applications, 2014, 26(3): 123-143.
|
[23] |
COHEN S D.Pairs of Primitive Elements in Fields of Even Order[J]. Finite Fields and Their Applications, 2014, 28(28): 22-42.
|