信息网络安全 ›› 2024, Vol. 24 ›› Issue (6): 879-892.doi: 10.3969/j.issn.1671-1122.2024.06.006
收稿日期:
2024-02-14
出版日期:
2024-06-10
发布日期:
2024-07-05
通讯作者:
杨宇光 作者简介:
杨宇光(1976—),女,河北,教授,博士,主要研究方向为量子计算和量子密码|刘冰心(1997—),女,山东,博士研究生,主要研究方向为量子通信和量子网络编码|徐光宝(1980—),男,山东,副教授,博士,主要研究方向为信息安全、密码学、区块链、图像处理、量子信息处理、量子密码、量子图像处理|姜东焕(1981—),女,山东,副教授,博士,主要研究方向为偏微分方程的图像处理、量子信息、量子密码、量子图像处理
基金资助:
YANG Yuguang1(), LIU Bingxin1, XU Guangbao2, JIANG Donghuan3
Received:
2024-02-14
Online:
2024-06-10
Published:
2024-07-05
摘要:
与二维量子密钥分发相比,高维量子密钥分发(High-Dimensional Quantum Key Distribution,HD-QKD)能够提供更高的密钥率并且可以容忍更多的噪声。然而,在量子通信中,对高维量子系统的操作限制了其实用性。文章基于时间仓复用提出了一种HD-QKD协议。首先,使用高维编码的单光子在通信双方的多对二维量子存储器(Quantum Memory,QM)之间创建可预报的并行纠缠;然后,通过对多对QM进行贝尔态测量,两个通信方可以检测窃听并获取密钥,无需额外的测量来检验安全性,这使得HD-QKD协议在成本和效率上都具有优势。此外,文章获得了实现最优密钥容量的条件,并讨论了HD-QKD协议的两个重要的密码学应用,即确定性安全的量子通信和量子保密查询。与现有方法相比,两者在效率上都有显著提高。综上所述,时间仓复用方法在解决密码学问题中具有强大能力。
中图分类号:
杨宇光, 刘冰心, 徐光宝, 姜东焕. 基于时间仓复用的高维量子密钥分发及应用[J]. 信息网络安全, 2024, 24(6): 879-892.
YANG Yuguang, LIU Bingxin, XU Guangbao, JIANG Donghuan. High-Dimensional Quantum Key Distribution via Time-Bin Multiplexing and Applications[J]. Netinfo Security, 2024, 24(6): 879-892.
图3
密钥容量比较 a)展示了取2N=6,10,20时,本文协议的密钥容量随Alice和Bob之间距离l变化的关系。同时,在相同参数下,使用一个光子纠缠一对QM的方法,生成2N=6,10,20对QM纠缠获得的密钥容量也在图3a)中展示。由图3a)可以看出,距离l=22 km时,本文协议的密钥容量分别为${{R}_{3}}=0.7955$,${{R}_{5}}=0.69$, ${{R}_{10}}=0.2696$,其中,当N=3,5,10时,本文协议的密钥容量分别超过后者的密钥容量$R'_{3}=0.0044$, $R'_{5}=5.8968\times {{10}^{-5}}$, $R'_{10}=6.9545\times {{10}^{-10}}$的1、4和9个数量级。计算$R$和${R}'$之间的差异D如公式(32)所示。
[1] | EKERT A, RENNER R. The Ultimate Physical Limits of Privacy[J]. Nature, 2014, 507(7493): 443-447. |
[2] | GISIN N, RIBORDY G, TITTEL W, et al. Quantum Cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145-195. |
[3] | PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in Quantum Cryptography[J]. Advances in Optics and Photonics, 2020, 12(4): 1012-1236. |
[4] | BENNETT C H, BRASSARD G. Quantum Cryptography: Public Key Distribution and Coin Tossing[C]// IEEE. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, 1984: 175-179. |
[5] | EKERT A K. Quantum Cryptography Based on Bell’s Theorem[EB/OL]. (1991-08-05)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.67.661. |
[6] | RALPH T C. Continuous Variable Quantum Cryptography[EB/OL]. (1999-12-08)[2024-02-12]. https://doi.org/10.1103/PhysRevA.61.010303. |
[7] | HILLERY M. Quantum Cryptography with Squeezed States[EB/OL]. (2000-01-14)[2024-02-12]. https://doi.org/10.1103/PhysRevA.61.022309. |
[8] | INOUE K, WAKS E, YAMAMOTO Y. Differential Phase Shift Quantum Key Distribution[EB/OL]. (2002-06-27)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.89.037902. |
[9] | LO H K, CURTY M, QI B. Measurement-Device-Independent Quantum Key Distribution[EB/OL]. (2012-03-30)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.108.130503. |
[10] | PIPARO N L, RAZAVI M, MUNRO W J. Measurement-Device-Independent Quantum Key Distribution with Nitrogen Vacancy Centers in Diamond[EB/OL]. (2017-02-27)[2024-02-12]. https://doi.org/10.1103/PhysRevA.95.022338. |
[11] | ZHOU Yiheng, YU Zongwen, WANG Xiangbin. Making the Decoy-State Measurement-Device-Independent Quantum Key Distribution Practically Useful[EB/OL]. (2016-04-18)[2024-02-12]. https://doi.org/10.1103/PhysRevA.93.042324. |
[12] | YIN Hualei, CHEN Tengyun, YU Zongwen, et al. Measurement-Device-Independent Quantum Key Distribution over a 404km Optical Fiber[EB/OL]. (2016-11-02)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.117.190501. |
[13] | WANG Chao, SONG Xiaotian, YIN Zhenqiang, et al. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution[EB/OL]. (2015-12-15)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.115.160502. |
[14] | ZHAO Yi, QI Bing, MA Xiongfeng, et al. Experimental Quantum Key Distribution with Decoy States[EB/OL]. (2006-02-22)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.96.070502. |
[15] | LIAO Shengkai, CAI Wenqi, LIU Weiyue, et al. Satellite-to-Ground Quantum Key Distribution[J]. Nature, 2017, 549(7670): 43-47. |
[16] | ZHU Haotao, HUANG Yizhi, LIU Hui, et al. Experimental Mode-Pairing Measurement-Device-Independent Quantum Key Distribution without Global Phase Locking[EB/OL]. (2023-01-17)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.130.030801. |
[17] | LUCAMARINI M, YUAN Zhiliang, DYNES J F, et al. Overcoming the Rate-Distance Limit of Quantum Key Distribution without Quantum Repeaters[J]. Nature, 2018, 557(7705): 400-403. |
[18] | WANG Rong, YIN Zhenqiang, LU Fengyu, et al. Optimized Protocol for Twin-Field Quantum Key Distribution[EB/OL]. (2020-08-28)[2024-02-12]. https://doi.org/10.1038/s42005-020-00415-0. |
[19] | TENG Jun, YIN Zhenqiang, FANYUAN Guanjie, et al. Sending-or-not-Sending Twin-Field Quantum Key Distribution with Multiphoton States[EB/OL]. (2021-12-27)[2024-02-12]. https://doi.org/10.1103/PhysRevA.104.062441. |
[20] | PIRANDOLA S, LAURENZA R, OTTAVIANI C, et al. Fundamental Limits of Repeaterless Quantum Communications[EB/OL]. (2017-04-26)[2024-02-12]. https://doi.org/10.1038/ncomms15043. |
[21] | ERKILIÇ Ö, CONLON L, SHAJILAL B, et al. Surpassing the Repeaterless Bound with a Photon-Number Encoded Measurement-Device-Independent Quantum Key Distribution Protocol[EB/OL]. (2023-03-28)[2024-02-12]. https://doi.org/10.1038/s41534-023-00698-5. |
[22] | TREIBER A, POPPE A, HENTSCHEL M, et al. A Fully Automated Entanglement-Based Quantum Cryptography System for Telecom Fiber Networks[EB/OL]. (2009-03-30)[2024-02-12]. https://doi.org/10.1088/1367-2630/11/4/045013. |
[23] | ERHARD M, KRENN M, ZEILINGER A. Advances in High-Dimensional Quantum Entanglement[J]. Nature Reviews Physics, 2020, 2(7): 365-381. |
[24] | HOWLAND G A, HOWELL J C. Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera[EB/OL]. (2013-02-20)[2024-02-12]. https://doi.org/10.1103/PhysRevX.3.011013. |
[25] | HU Xiaomin, CHEN Jiangshan, LIU Biheng, et al. Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits[EB/OL]. (2016-10-24)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.117.170403. |
[26] | ZHANG Lijian, SILBERHORN C, WALMSLEY I A. Secure Quantum Key Distribution Using Continuous Variables of Single Photons[EB/OL]. (2008-03-18)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.100.110504. |
[27] | ALI-KHAN I, BROADBENT C J, HOWELL J C. Large-Alphabet Quantum Key Distribution Using Energy-Time Entangled Bipartite States[EB/OL]. (2007-02-08)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.98.060503. |
[28] | SHERIDAN L, SCARANI V. Security Proof for Quantum Key Distribution Using Qudit Systems[EB/OL]. (2010-09-07)[2024-02-12]. https://doi.org/10.1103/PhysRevA.82.030301. |
[29] | SHERIDAN L, SCARANI V. Erratum: Security Proof for Quantum Key Distribution Using Qudit Systems[Phys. Rev. A 82, 030301 (R)( 2010)][EB/OL]. (2011-03-07)[2024-02-12]. https://doi.org/10.1103/PhysRevA.83.039901. |
[30] | TITTEL W, BRENDEL J, ZBINDEN H, et al. Quantum Cryptography Using Entangled Photons in Energy-Time Bell States[EB/OL]. (2000-05-15)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.84.4737. |
[31] | ALI-KHAN I, BROADBENT C J, HOWELL J C. Large-Alphabet Quantum Key Distribution Using Energy-Time Entangled Bipartite States[EB/OL]. (2007-02-08)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.98.060503. |
[32] | ZHONG Tian, ZHOU Hongchao, HORANSKY R D, et al. Photon-Efficient Quantum Key Distribution Using Time-Energy Entanglement with High-Dimensional Encoding[EB/OL]. (2015-02-04)[2024-02-12]. https://doi.org/10.1088/1367-2630/17/2/022002. |
[33] | ETCHEVERRY S, CAÑAS G, GÓMEZ E S, et al. Quantum Key Distribution Session with 16-Dimensional Photonic States[EB/OL]. (2013-07-30)[2024-02-12]. https://doi.org/10.1038/srep02316. |
[34] | LI Dongdong, ZHAO Meisheng, LI Zhi, et al. High Dimensional Quantum Key Distribution with Temporal and Polarization Hybrid Encoding[EB/OL]. (2022-01-21)[2024-02-12]. https://doi.org/10.1016/j.yofte.2022.102828. |
[35] | MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the Orbital Angular Momentum States of Photons[J]. Nature, 2001, 412(6844): 313-316. |
[36] | MOLINA-TERRIZA G, VAZIRI A, ŘEHÁČEK J, et al. Triggered Qutrits for quantum Communication Protocols[EB/OL]. (2004-04-23)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.92.167903. |
[37] | MAFU M, DUDLEY A, GOYAL S, et al. Higher-Dimensional Orbital-Angular-Momentum-Based Quantum Key Distribution with Mutually Unbiased Bases[EB/OL]. (2013-09-05)[2024-02-12]. https://doi.org/10.1103/PhysRevA.88.032305. |
[38] | ISLAM N T, LIM C C W, CAHALL C, et al. Provably Secure and High-Rate Quantum Key Distribution with Time-Bin Qudits[EB/OL]. (2017-11-24)[2024-02-12]. https://doi.org/10.1126/sciadv.1701491. |
[39] | VAGNILUCA I, DA L B, RUSCA D, et al. Efficient Time-Bin Encoding for Practical High-Dimensional Quantum Key Distribution[EB/OL]. (2020-07-17)[2024-02-12]. https://doi.org/10.1103/PhysRevApplied.14.014051. |
[40] | PIPARO N L, MUNRO W J, NEMOTO K. Quantum Multiplexing[EB/OL]. (2019-02-27)[2024-02-12]. https://doi.org/10.1103/PhysRevA.99.022337. |
[41] | XIE Zhihao, LIU Yijie, MO Xiang, et al. Quantum Entanglement Creation for Distant Quantum Memories via Time-Bin Multiplexing[EB/OL]. (2021-12-06)[2024-02-12]. https://doi.org/10.1103/PhysRevA.104.062409. |
[42] | LIU Chenxu, DUTT M G, PEKKER D. Single-Photon Heralded Two-Qubit Unitary Gates for Pairs of Nitrogen-Vacancy Centers in Diamond[EB/OL]. (2018-11-27)[2024-02-12]. https://doi.org/10.1103/PhysRevA.98.052342. |
[43] | CHILDRESS L, HANSON R. Diamond NV Centers for Quantum Computing and Quantum Networks[J]. MRS Bulletin, 2013, 38(2): 134-138. |
[44] |
BLOK M S, KALB N, REISERER A, et al. Towards Quantum Networks of Single Spins: Analysis of a Quantum Memory with an Optical Interface in Diamond[J]. Faraday Discussions, 2015, 184: 173-182.
doi: 10.1039/c5fd00113g pmid: 26411802 |
[45] | DOHERTY M W, MANSON N B, DELANEY P, et al. The Nitrogen-Vacancy Colour Centre in Diamond[J]. Physics Reports, 2013, 528(1): 1-45. |
[46] | XIE Yuanmei, LU Yushuo, WENG Chenxun, et al. Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference[EB/OL]. (2022-04-21)[2024-02-12]. https://doi.org/10.1103/PRXQuantum.3.020315. |
[47] | ZHOU Lai, LIN Jinping, XIE Yuanmei, et al. Experimental Quantum Communication Overcomes the Rate-Loss Limit without Global Phase Tracking[EB/OL]. (2023-06-20)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.130.250801. |
[48] | ŻUKOWSKI M, ZEILINGER A, HORNE M A, et al. ‘‘Event-Ready-Detectors’’ Bell Experiment via Entanglement Swapping[EB/OL]. (1993-12-27)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.71.4287. |
[49] | NING Yu, KANG Yihao, SHI Zhicheng, et al. Efficient Implementation of Complete and Nondestructive Bell-State Measurement for Trapped Ions with Reverse Engineering[EB/OL]. (2020-11-18)[2024-02-12]. https://doi.org/10.1088/1612-202X/abc32d. |
[50] | WELTE S, THOMAS P, HARTUNG L, et al. A Nondestructive Bell-State Measurement on Two Distant Atomic Qubits[J]. Nature Photonics, 2021, 15(7): 504-509. |
[51] | BARRETT S D, KOK P, NEMOTO K, et al. Symmetry Analyzer for Nondestructive Bell-State Detection Using Weak Nonlinearities[EB/OL]. (2005-06-07)[2024-02-12]. https://doi.org/10.1103/PhysRevA.71.060302. |
[52] | REN Xifeng, GUO Guoping, GUO Guangcan. Complete Bell-States Analysis Using Hyper-Entanglement[J]. Physics Letters A, 2005, 343(1-3): 8-11. |
[53] | LI Tao, MIRANOWICZ A, HU Xuedong, et al. Quantum Memory and Gates Using a Λ-Type Quantum Emitter Coupled to a Chiral Waveguide[EB/OL]. (2018-06-11)[2024-02-12]. https://doi.org/10.1103/PhysRevA.97.062318. |
[54] | JIANG Dong, CHEN Yuanyuan, GU Xuemei, et al. Deterministic Secure Quantum Communication Using a Single d-Level System[EB/OL]. (2017-03-22)[2024-02-12]. https://doi.org/10.1038/srep44934. |
[55] | YANG Yuguang, DONG Jingru, YANG Yongli, et al. High-Capacity Measurement-Device-Independent Deterministic Secure Quantum Communication[EB/OL]. (2021-06-05)[2024-02-12]. https://doi.org/10.1007/s11128-021-03129-6. |
[56] | ROY S, MAITRA A, MUKHOPADHYAY S. Measurement-Device-Independent Quantum Private Query with Qutrits[EB/OL]. (2018-09-07)[2024-02-12]. https://doi.org/10.1142/S0219749918500454. |
[57] | GAO Fei, LIU Bin, HUANG Wei, et al. Postprocessing of the Oblivious Key in Quantum Private Query[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(3): 98-108. |
[58] |
GAO Fei, LIU Bin, WEN Qiaoyan, et al. Flexible Quantum Private Queries Based on Quantum Key Distribution[J]. Optics Express, 2012, 20(16): 17411-17420.
doi: 10.1364/OE.20.017411 pmid: 23038294 |
[59] | WEI T C, BARREIRO J T, KWIAT P G. Hyperentangled Bell-State Analysis[EB/OL]. (2007-06-27)[2024-02-12]. https://doi.org/10.1103/PhysRevA.75.060305. |
[60] | PISENTI N, GAEBLER C P E, LYNN T W. Distinguishability of Hyperentangled Bell States by Linear Evolution and Local Projective Measurement[EB/OL]. (2011-08-26)[2024-02-12]. https://doi.org/10.1103/PhysRevA.84.022340. |
[61] | SHENG Yubo, DENG Fuguo, LONG Guilu. Complete Hyperentangled-Bell-State Analysis for Quantum Communication[EB/OL]. (2010-09-21)[2024-02-12]. https://doi.org/10.1103/PhysRevA.82.032318. |
[62] | XIA Yan, CHEN Qingqin, SONG Jie, et al. Efficient Hyperentangled Greenberger-Horne-Zeilinger States Analysis with Cross-Kerr Nonlinearity[J]. Journal of the Optical Society of America B, 2012, 29: 1029-1037. |
[63] | LI Xihan, GHOSE S. Self-Assisted Complete Maximally Hyperentangled State Analysis via the Cross-Kerr Nonlinearity[EB/OL]. (2016-02-01)[2024-02-12]. https://doi.org/10.1103/PhysRevA.93.022302. |
[64] | LI Xihan, GHOSE S. Hyperentangled Bell-State Analysis and Hyperdense Coding Assisted by Auxiliary Entanglement[EB/OL]. (2017-08-21)[2024-02-12]. https://doi.org/10.1103/PhysRevA.96.020303. |
[65] | JAKOBI M, SIMON C, GISIN N, et al. Practical Private Database Queries Based on a Quantum-Key-Distribution Protocol[EB/OL]. (2011-02-02)[2024-02-12]. https://doi.org/10.1103/PhysRevA.83.022301. |
[66] | BORREGAARD J, PICHLER H, SCHRÖDER T, et al. One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces[EB/OL]. (2020-06-30)[2024-02-12]. https://doi.org/10.1103/PhysRevX.10.021071. |
[67] | DONOHUE J M, AGNEW M, LAVOIE J, et al. Coherent Ultrafast Measurement of Time-Bin Encoded Photons[EB/OL]. (2013-12-09)[2024-02-12]. https://doi.org/10.1103/PhysRevLett.111.153602. |
[68] | REED G T, MASHANOVICH G, GARDES F Y, et al. Silicon Optical Modulators[J]. Nature Photonics, 2010, 4(8): 518-526. |
[69] | WANG Cheng, ZHANG Mian, CHEN Xi, et al. Integrated Lithium Niobate Electro-Optic Modulators Operating at CMOS-Compatible Voltages[J]. Nature, 2018, 562(7725): 101-104. |
[70] | BULUTA I, ASHHAB S, NORI F. Natural and Artificial Atoms for Quantum Computation[EB/OL]. (2011-09-19)[2024-02-12]. https://doi.org/10.1088/0034-4885/74/10/104401. |
[71] | AWSCHALOM D D, HANSON R, WRACHTRUP J, et al. Quantum Technologies with Optically Interfaced Solid-State Spins[J]. Nature Photonics, 2018, 12(9): 516-527. |
[72] | JANITZ E, BHASKAR M K, CHILDRESS L. Cavity Quantum Electrodynamics with Color Centers in Diamond[J]. Optica, 2020, 7(10): 1232-1252. |
[73] | LÜTKENHAUS N, CALSAMIGLIA J, SUOMINEN K A. Bell Measurements for Teleportation[EB/OL]. (1999-05-01)[2024-02-12]. https://doi.org/10.1103/PhysRevA.59.3295. |
[74] | HAQ S U, KHALIQUE A. Long Distance Cavity Entanglement by Entanglement Swapping Using Atomic Momenta[J]. Optics Communications, 2015, 334: 290-293. |
[1] | 白峻林, 尹华磊. 测量设备无关量子密钥分发中的改进型诱骗态方法[J]. 信息网络安全, 2024, 24(6): 926-936. |
[2] | 谢四江, 高琼, 冯雁. 基于可信中继量子密钥分发网络的最少公共节点多路径路由方案[J]. 信息网络安全, 2021, 21(7): 35-42. |
[3] | 冯雁, 刘念, 谢四江. 一种量子密钥池的双向使用方案[J]. 信息网络安全, 2020, 20(12): 40-46. |
[4] | 刘利娟, 李志慧, 支丹利. 可实现身份认证的多方量子密钥分发协议[J]. 信息网络安全, 2020, 20(11): 59-66. |
[5] | 黄鹏, 曾贵华. 连续变量量子密钥分发实际安全性研究进展[J]. 信息网络安全, 2017, 17(11): 7-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||