信息网络安全 ›› 2024, Vol. 24 ›› Issue (6): 893-902.doi: 10.3969/j.issn.1671-1122.2024.06.007
丁勇1,2, 罗世东1,2, 杨昌松1,2(), 梁海1,2
收稿日期:
2024-04-20
出版日期:
2024-06-10
发布日期:
2024-07-05
通讯作者:
杨昌松 作者简介:
丁勇(1975—),男,重庆,教授,博士,CCF高级会员,主要研究方向为密码学及其应用、网络空间安全、人工智能、区块链及其应用|罗世东(1996—),男,江西,硕士研究生,主要研究方向为密码学及其应用|杨昌松(1989—),男,广西,副教授,博士,主要研究方向为云计算及其数据安全、应用密码学、网络安全、深度学习及其应用|梁海(1982—),男,广西,副教授,硕士,主要研究方向为区块链及其应用、网络安全、软件项目管理
基金资助:
DING Yong1,2, LUO Shidong1,2, YANG Changsong1,2(), LIANG Hai1,2
Received:
2024-04-20
Online:
2024-06-10
Published:
2024-07-05
摘要:
可否认环签名是环签名的拓展,允许环成员无需依赖可信第三方的情况下,能够在必要时通过特定协议确认或者否认自己的签名行为。可否认环签名具有追踪性,兼顾了隐私保护和可控监管的需求。将可否认环签名技术与基于标识的密码体系相结合,既能保留可否认环签名的主要特性,又能克服传统公钥基础设施下用户公钥和证书管理复杂的问题。文章基于SM9数字签名算法,提出一种身份标识的可否认环签名方案,能够实现对环签名的确认和否认,同时避免了公钥证书管理的问题。文章证明了所提方案在随机预言模型下满足正确性、不可伪造性、匿名性、可追踪性和不可诽谤性。通过模拟实验对通信和计算开销进行分析,所提方案仅需常数次的双线性配对操作,且在计算效率和通信成本方面均具有显著优势。
中图分类号:
丁勇, 罗世东, 杨昌松, 梁海. 基于SM9标识密码算法的可否认环签名方案[J]. 信息网络安全, 2024, 24(6): 893-902.
DING Yong, LUO Shidong, YANG Changsong, LIANG Hai. An Identity-Based Deniable Ring Signature Scheme Based on SM9 Signature Algorithm[J]. Netinfo Security, 2024, 24(6): 893-902.
表1
符号说明
符号 | 说明 |
---|---|
p, N | 大素数 |
$Z_{k}^{*}$ | 整数集合{1,2,…, k} |
${{G}_{1}}$,${{G}_{2}}$ | 加法循环群 |
${{G}_{T}}$ | 乘法循环群 |
e | 双线性映射 |
${{P}_{1}}$,${{P}_{2}}$ | 分别是群${{G}_{1}}$和${{G}_{2}}$的生成元 |
$H\left( * \right)$ | 哈希运算 |
${{P}_{pub-s}}$ | 签名主公钥 |
$I{{D}_{i}}$ | 用户身份标识 |
${{U}_{n}}$ | 用户身份标识集合 |
M, σ | 消息及其签名值 |
[a]P | 群中的乘法:P的a倍点 |
$\alpha ||\beta $ | $\alpha $与$\beta $拼接 |
[1] | RIVEST R L, SHAMIR A, TAUMAN Y. How to Leak a Secret[C]// Springer. Advances in Cryptology—ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast. Heidelberg: Springer, 2001: 552-565. |
[2] | QIU Chi, ZHANG Shibin, CHANG Yan, et al. Electronic Voting Scheme Based on a Quantum Ring Signature[J]. International Journal of Theoretical Physics, 2021, 60: 1550-1555. |
[3] | KOMANO Y, OHTA K, SHIMBO A, et al. Toward the Fair Anonymous Signatures: Deniable Ring Signatures[C]// Springer. Cryptographers’ Track at the RSA Conference. Heidelberg: Springer, 2006: 174-191. |
[4] | WU Qianhong, SUSILO W, MU Yi, et al. Ad Hoc Group Signatures[C]// Springer. International Workshop on Security. Heidelberg: Springer, 2006: 120-135. |
[5] | CAMENISCH J, MICHELS M. A Group Signature Scheme Based on an RSA-Variant[J]. BRICS Report Series, 1998, 5(27): 160-174. |
[6] | BENALOH J, DE M M. One-Way Accumulators: A Decentralized Alternative to Digital Signatures[C]// Springer. Workshop on the Theory and Application of Cryptographic Techniques. Heidelberg: Springer, 1993: 274-285. |
[7] | LIU D Y W, LIU J K, MU Yi, et al. Revocable Ring Signature[J]. Journal of Computer Science and Technology, 2007, 22: 785-794. |
[8] | ZENG Shengke, JIANG Shaoquan, QIN Zhiguang. An Efficient Conditionally Anonymous Ring Signature in the Random Oracle Model[J]. Theoretical Computer Science, 2012, 461: 106-114. |
[9] | ZENG Shengke, LI Qinyi, QIN Zhiguang, et al. Non-Interactive Deniable Ring Signature without Random Oracles[J]. Security and Communication Networks, 2016, 9(12): 1810-1819. |
[10] | GAO Wen, CHEN Liqun, HU Yupu, et al. Lattice-Based Deniable Ring Signatures[J]. International Journal of Information Security, 2019, 18: 355-370. |
[11] | PARK S, SEALFON A. It Wasn’t Me! Repudiability and Claimability of Ring Signatures[C]// Springer. Advances in Cryptology-CRYPTO 2019: 39th Annual International Cryptology Conference. Heidelberg: Springer, 2019: 159-190. |
[12] | JIA Huiwen, TANG Chunming, ZHANG Yanhua. Lattice-Based Logarithmic-Size Non-Interactive Deniable Ring Signatures[J]. Entropy, 2021, 23(8): 980. |
[13] | LIN Hao, WANG Mingqiang. Repudiable Ring Signature: Stronger Security and Logarithmic-Size[EB/OL]. (2022-03-01)[2024-04-15]. https://api.semanticscholar.org/CorpusID:207988596. |
[14] | SHAMIR A. Identity-Based Cryptosystems and Signature Schemes[C]// Springer. Advances in Cryptology:Proceedings of CRYPTO 84 4. Heidelberg: Springer, 1985: 47-53. |
[15] | ZHANG Fangguo, KIM K. ID-Based Blind Signature and Ring Signature from Pairings[C]// Springer. Advances in Cryptology-ASIACRYPT 2002. Heidelberg: Springer, 2002: 533-547. |
[16] | LIN C Y, WU T C. An Identity-Based Ring Signature Scheme from Bilinear Pairings[C]// IEEE. 18th International Conference on Advanced Information Networking and Applications. New York: IEEE, 2004: 182-185. |
[17] | CHOW S S M, YIU S M, HUI L C K. Efficient Identity Based Ring Signature[C]// Springer. Applied Cryptography and Network Security. Heidelberg: Springer, 2005: 499-512. |
[18] | AU M H, LIU J K, SUSILO W, et al. Constant-Size ID-Based Linkable and Revocable-iff-Linked Ring Signature[C]// Springer. Progress in Cryptology-INDOCRYPT 2006. Heidelberg: Springer, 2006: 364-378. |
[19] | XIE Zongxiao, DONG Kunxiang, ZHEN Jie. International Standardization of Domestic Commercial Cryptographic Algorithms and Their Corresponding Relations[J]. China Quality and Standards Review, 2021(5): 20-23, 29. |
谢宗晓, 董坤祥, 甄杰. 国产商用密码算法的国际标准化及其对应关系[J]. 中国质量与标准导报, 2021(5): 20-23,29. | |
[20] | FAN Qing, HE Debiao, LUO Min, et al. Ring Signature Schemes Based on SM2 Digital Signature Algorithm[J]. Journal of Cryptologic Research, 2021, 8(4): 710-723. |
范青, 何德彪, 罗敏, 等. 基于SM2数字签名算法的环签名方案[J]. 密码学报, 2021, 8(4):710-723. | |
[21] | PENG Cong, HE Debiao, LUO Min, et al. An Identity-Based Ring Signature Scheme for SM9 Algorithm[J]. Journal of Cryptologic Research, 2021, 8(4): 724-734. |
彭聪, 何德彪, 罗敏, 等. 基于SM9标识密码算法的环签名方案[J]. 密码学报, 2021, 8(4):724-734. | |
[22] |
RAO Jintao, CUI Zhe. Secure E-Voting Protocol Based on SM9 Blind Signature and Ring Signature[J]. Computer Engineering, 2023, 49(6): 13-23, 33.
doi: 10.19678/j.issn.1000-3428.0066576 |
饶金涛, 崔喆. 基于SM9盲签名与环签名的安全电子选举协议[J]. 计算机工程, 2023, 49(6):13-23,33.
doi: 10.19678/j.issn.1000-3428.0066576 |
|
[23] | AN Haoyang, HE Debiao, BAO Zijian, et al. Ring Signature Based on the SM9 Digital Signature and Its Application in Blockchain Privacy Protection[J]. Journal of Computer Research and Development, 2023, 60(11): 2545-2554. |
安浩杨, 何德彪, 包子健, 等. 基于SM9数字签名的环签名及其在区块链隐私保护中的应用[J]. 计算机研究与发展, 2023, 60(11):2545-2554. | |
[24] | BAO Zijian, HE Debiao, PENG Cong, et al. Deniable Ring Signature Scheme Based on SM2 Digital Signature Algorithm[J]. Journal of Cryptologic Research, 2023, 10(2): 264-275. |
包子健, 何德彪, 彭聪, 等. 基于SM2数字签名算法的可否认环签名[J]. 密码学报, 2023, 10(2):264-275. | |
[25] | HERRANZ J, SÁEZ G. Forking Lemmas for Ring Signature Schemes[C]// Springer. International Conference on Cryptology. Heidelberg: Springer, 2003: 266-279. |
[26] | BARRETO P S L M, LIBERT B, MCCULLAGH N, et al. Efficient and Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps[C]// Springer. Advances in Cryptology-ASIACRYPT 2005. Heidelberg: Springer, 2005: 515-532. |
[27] | PEREIRA G C C F, SIMPLÍCIO J M A, NAEHRIG M, et al. A Family of Implementation-Friendly BN Elliptic Curves[J]. Journal of Systems and Software, 2011, 84(8): 1319-1326. |
[1] | 欧阳梦迪, 孙钦硕, 李发根. SM9加密算法的颠覆攻击与改进[J]. 信息网络安全, 2024, 24(6): 831-842. |
[2] | 张雪锋, 陈婷婷, 苗美霞, 程叶霞. 基于SM9的多接收者混沌密钥生成方案[J]. 信息网络安全, 2024, 24(4): 555-563. |
[3] | 张艳硕, 袁煜淇, 李丽秋, 杨亚涛, 秦晓宏. 基于SM2的周期性可否认环签名方案[J]. 信息网络安全, 2024, 24(4): 564-573. |
[4] | 翟鹏, 何泾沙, 张昱. 物联网环境下基于SM9算法和区块链技术的身份认证方法[J]. 信息网络安全, 2024, 24(2): 179-187. |
[5] | 朱郭诚, 何德彪, 安浩杨, 彭聪. 基于区块链和SM9数字签名的代理投票方案[J]. 信息网络安全, 2024, 24(1): 36-47. |
[6] | 周权, 陈民辉, 卫凯俊, 郑玉龙. 基于SM9的属性加密的区块链访问控制方案[J]. 信息网络安全, 2023, 23(9): 37-46. |
[7] | 安浩杨, 何德彪, 包子健, 彭聪. 一种基于证书的数字签名方案[J]. 信息网络安全, 2023, 23(3): 13-21. |
[8] | 张雪锋, 胡奕秀. 一种基于SM9的可撤销标识广播加密方案[J]. 信息网络安全, 2023, 23(1): 28-35. |
[9] | 王圣雯, 胡爱群. 基于SM9算法的邮件加密系统设计[J]. 信息网络安全, 2022, 22(6): 53-60. |
[10] | 吴克河, 程瑞, 郑碧煌, 崔文超. 电力物联网安全通信协议研究[J]. 信息网络安全, 2021, 21(9): 8-15. |
[11] | 张昱, 孙光民, 李煜. 基于SM9算法的移动互联网身份认证方案研究[J]. 信息网络安全, 2021, 21(4): 1-9. |
[12] | 周艺华, 吕竹青, 杨宇光, 侍伟敏. 基于区块链技术的数据存证管理系统[J]. 信息网络安全, 2019, 19(8): 8-14. |
[13] | 张雪锋, 彭华. 一种基于SM9算法的盲签名方案研究[J]. 信息网络安全, 2019, 19(8): 61-67. |
[14] | 俞惠芳, 高新哲. 多源网络编码同态环签名方案研究[J]. 信息网络安全, 2019, 19(2): 36-42. |
[15] | 黎琳, 张旭霞. zk-snark的双线性对的国密化方案[J]. 信息网络安全, 2019, 19(10): 10-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||