信息网络安全 ›› 2023, Vol. 23 ›› Issue (12): 91-102.doi: 10.3969/j.issn.1671-1122.2023.12.009
收稿日期:
2023-04-11
出版日期:
2023-12-10
发布日期:
2023-12-13
通讯作者:
严明
E-mail:myan@fudan.edu.cn
作者简介:
吴圣麟(1998—),男,上海,硕士研究生,主要研究方向为网络安全|刘汪根(1985—),男,安徽,主要研究方向为大数据、分布式数据库、数据云和数据安全|严明(1976—),男,上海,工程师,硕士,主要研究方向为计算机网络、云计算及网络安全|吴杰(1973—),男,浙江,研究员,博士,主要研究方向为计算机网络、分布式系统和网络多媒体
基金资助:
WU Shenglin1, LIU Wanggen2, YAN Ming1(), WU Jie1
Received:
2023-04-11
Online:
2023-12-10
Published:
2023-12-13
摘要:
容器技术是目前云计算领域的主流技术之一,与虚拟机相比,容器具有启动速度快、可移植性高、扩展能力强等优势。然而,更低的资源隔离性和共享内核的特性给容器和云平台引入了新的安全风险,容易导致资源侵占、数据泄露,宿主机被劫持等问题。为实现容器云平台安全与可观测性,文章提出了一种基于无监督系统调用过滤规则生成的容器云实时异常检测系统,首先,通过无代理模式采集集群中容器的系统调用行为数据;然后,通过一种适用于系统调用数据且关注具体参数的方法在线挖掘过滤规则模板;最后,将挖掘得到的原始规则模板适配至具体规则检测引擎并更新,实现实时异常检测。实验结果表明,该系统可正确挖掘较为精确的系统调用规则模板并转换为具体检测规则,其检测效果与人工编写基本一致。
中图分类号:
吴圣麟, 刘汪根, 严明, 吴杰. 基于无监督系统调用规则生成的容器云实时异常检测系统[J]. 信息网络安全, 2023, 23(12): 91-102.
WU Shenglin, LIU Wanggen, YAN Ming, WU Jie. A Real-Time Anomaly Detection System for Container Clouds Based on Unsupervised System Call Rule Generation[J]. Netinfo Security, 2023, 23(12): 91-102.
表2
系统调用规则模板的基本内容
基本字段 | 描述 | |
---|---|---|
template_info | 模板自身基本信息,包括id、更新时间等 | |
syscall_type | 系统调用类型信息,包括类型名称与方向(进入或返回),此字段为枚举值,不参与模板挖掘 | |
image_info | 容器镜像相关信息,包括镜像名称和版本 | |
process_info | 进程相关信息,包括进程名、进程路径、进程参数及父进程相应信息 | |
event_action | action_type | 事件操作信息,包含操作类型(如tcp、file)、操作选项(如打开文件时只读、读写模式)、操作目标列表(如具体打开的文件路径、IP地址,采用列表面对rename等涉及多对象的操作),其中类型与选项为枚举值,不参与模板挖掘 |
action_opt | ||
action_subjects | ||
event_results | 事件结果列表,包括返回值、数据大小等 | |
event_data | 事件相关数据,例如,write调用所写内容 |
表3
模板挖掘效果对比
场景 | 模板总数 | 总损失 | ||||
---|---|---|---|---|---|---|
本算法 | Drain | SwissLog | 本算法 | Drain | SwissLog | |
CVE-2017-7529 | 8 | 11 | 9 | 5.16 | 5.59 | 6.92 |
CVE-2017-12635 | 10 | 12 | 7 | 6.06 | 9.11 | 6.01 |
CVE-2018-3760 | 28 | 57 | 64 | 13.78 | 66.37 | 23.33 |
CVE-2019-5418 | 26 | 38 | 45 | 13.19 | 28.41 | 30.68 |
CVE-2020-9484 | 19 | 17 | 13 | 7.39 | 6.78 | 14.73 |
CVE-2020-13942 | 77 | 93 | 63 | 13.06 | 12.28 | 40.39 |
CVE-2020-23839 | 28 | 27 | 36 | 7.44 | 64.32 | 34.79 |
EPS_CWE-434 | 398 | 77 | 245 | 24.97 | 45.1 | 74.71 |
PHP_CWE-434 | 64 | 55 | 57 | 12.29 | 36.41 | 23.95 |
表4
平均日志处理速度对比
场景 | 平均日志处理速度(条/ms) | ||
---|---|---|---|
本算法 | Drain | SwissLog | |
CVE-2017-7529 | 16.67 | 25.00 | 7.69 |
CVE-2017-12635 | 25.00 | 7.14 | 0.55 |
CVE-2018-3760 | 3.70 | 20.00 | 4.55 |
CVE-2019-5418 | 7.69 | 20.00 | 5.00 |
CVE-2020-9484 | 14.29 | 5.56 | 0.52 |
CVE-2020-13942 | 3.45 | 3.23 | 0.16 |
CVE-2020-23839 | 9.09 | 25.00 | 12.50 |
EPS_CWE-434 | 5.88 | 20.00 | 5.00 |
PHP_CWE-434 | 16.67 | 14.29 | 1.79 |
[1] |
BERNSTEIN D. Containers and Cloud: From LXC to Docker to Kubernetes[J]. IEEE Cloud Computing, 2014, 1(3): 81-84.
doi: 10.1109/MCC.2014.51 URL |
[2] | LIN X, LEI L, WANG Y, et al. A Measurement Study on Linux Container Security: Attacks and Countermeasures[C]// ACM. Proceedings of the 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 418-429. |
[3] | KERRISK M. Linux Manual Pages: Section 7[EB/OL]. [2023-08-10]. https://man7. org/linux/man-pages/dir_section_7. html. |
[4] |
MARTIN A, RAPONI S, COMBE T, et al. Docker Ecosystem- Vulnerability Analysis[J]. Computer Communications, 2018, 122: 30-43.
doi: 10.1016/j.comcom.2018.03.011 URL |
[5] | Tencent Cloud Computing(Beijing) Co., Ltd. Container Security Whitepaper of Tencent Cloud[EB/OL]. (2021-04-01)[2023-04-10]. https://cloud.tencent.com/developer/article/1639379?from=15425. |
腾讯云计算北京有限责任公司. 腾讯云容器安全白皮书[EB/OL]. (2021-04-01)[2023-04-10]. https://cloud.tencent.com/developer/article/1639379?from=15425. | |
[6] | LIU M, XUE Z, XU X, et al. Host-Based Intrusion Detection System with System Calls: Review and Future Trends[J]. ACM Computing Surveys, 2019, 51(5): 1-36. |
[7] | CASTANHEL G R, HEINRICH T, CESCHIN F, et al. Taking a Peek: An Evaluation of Anomaly Detection Using System Calls for Containers[C]// IEEE. 2021 IEEE Symposium on Computers and Communications (ISCC). New York: IEEE, 2021: 1-6. |
[8] | MOORE P, SMALLEY S, PARIS E. Linux Security Module Usage[EB/OL]. [2023-08-11]. https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html. |
[9] | HUANG C, WANG K, LI Y, et al. ASPGen-D: Automatically Generating Fine-Grained Apparmor Policies for Docker[C]// IEEE. 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). New York: IEEE, 2022: 822-829. |
[10] | ZHU H, GEHRMANN C. Kub-Sec, An Automatic Kubernetes Cluster AppArmor Profile Generation Engine[C]// IEEE. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). New York: IEEE, 2022: 129-137. |
[11] | IIGUNI T, KAMEI H, SAISHO K. Sprofiler: Automatic Generating System of Container-Native System Call Filtering Rules for Attack Surface Reduction[C]// IEEE. 2021 International Conference on Computational Science and Computational Intelligence (CSCI). New York: IEEE, 2021: 704-709. |
[12] |
SULTAN S, AHMAD I, DIMITRIOU T. Container Security: Issues, Challenges, and the Road Ahead[J]. IEEE Access, 2019, 7: 52976-52996.
doi: 10.1109/Access.6287639 URL |
[13] | GRIMMER M, RÖHLING M, KREUSEL D, et al. A Modern and Sophisticated Host Based Intrusion Detection Data Set[J]. IT-Sicherheit Als Voraussetzung Für Eine Erfolgreiche Digitalisierung, 2019: 135-145. |
[14] | FALCOSECURITY. Falco[EB/OL]. (2023-04-06)[2023-04-10]. https://falco.org. |
[15] | AQUASECURITY. Tracee[EB/OL]. (2023-04-01)[2023-04-10]. https://github.com/aquasecurity/tracee. |
[16] | GHAVAMNIA S, PALIT T, BENAMEUR A. Confine: Automated System Call Policy Generation for Container Attack Surface Reduction[EB/OL]. (2020-10-03)[2023-04-10]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1s1f0js0wg1b0pm0k55v0p50c9316847&site=xueshu_se. |
[17] | CANELLA C, WERNER M, GRUSS D, et al. Automating Seccomp Filter Generation for Linux Applications[C]// ACM. Proceedings of the 2021 on Cloud Computing Security Workshop. New York: ACM, 2021: 139-151. |
[18] | MATTETTI M, SHULMAN-PELEG A, ALLOUCHE Y, et al. Securing the Infrastructure and the Workloads of Linux Containers[C]// IEEE. 2015 IEEE Conference on Communications and Network Security (CNS). New York: IEEE, 2015: 559-567. |
[19] | LOUKIDIS-ANDREOU F, GIANNAKOPOULOS I, DOKA K, et al. Docker-Sec: A Fully Automated Container Security Enhancement Mechanism[C]// IEEE. 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). New York: IEEE, 2018: 1561-1564. |
[20] |
ZHU H, GEHRMANN C. Lic-Sec: An Enhanced App Armor Docker Security Profile Generator[J]. Journal of Information Security and Applications, 2021, 61: 102924-102931.
doi: 10.1016/j.jisa.2021.102924 URL |
[21] | TUNDE-ONADELE O, HE J, DAI T, et al. A Study on Container Vulnerability Exploit Detection[C]// IEEE. 2019 IEEE International Conference on Cloud Engineering (IC2E). New York: IEEE, 2019: 121-127. |
[22] | LI Xiaohan, ZHANG Xinyou. Docker Anomaly Detection Based on System Call[J]. Microelectronics & Computer, 2022, 39(12): 77-85. |
栗晓晗, 张新有. 基于系统调用的 Docker 容器异常检测[J]. 微电子学与计算机, 2022, 39(12): 77-85. | |
[23] | TIEN C, HUANG T, TIEN C, et al. KubAnomaly: Anomaly Detection for the Docker Orchestration Platform with Neural Network Approaches[J]. Engineering Reports, 2019, 1(5): 80-92. |
[24] | Github. Sysdig[EB/OL]. (2023-02-20)[2023-04-10]. https://github.com/draios/sysdig. |
[25] | HE P, ZHU J, ZHENG Z, et al. Drain: An Online Log Parsing Approach with Fixed Depth Tree[C]// IEEE. 2017 IEEE International Conference on Web Services (ICWS). New York: IEEE, 2017: 33-40. |
[26] | LI X, CHEN P, JING L, et al. SwissLog: Robust and Unified Deep Learning Based Log Anomaly Detection for Diverse Faults[C]// IEEE. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). New York: IEEE, 2020: 92-103. |
[27] |
ZHU Yuqian, DENG Jiaying, PU Jiachen, et al. ML-Parser: An Efficient and Accurate Online Log Parser[J]. Journal of Computer Science and Technology, 2022, 37(6): 1412-1423.
doi: 10.1007/s11390-021-0730-4 |
[28] | ZHU J, HE S, LIU J, et al. Tools and Benchmarks for Automated Log Parsing[C]// IEEE/ACM. 2019 IEEE/ACM 41st International Conference on Software Engineering:Software Engineering in Practice (ICSE-SEIP). New York: IEEE, 2019: 121-130. |
[29] | LUPTON S, WASHIZAKI H, YOSHIOKA N, et al. Literature Review on Log Anomaly Detection Approaches Utilizing Online Parsing Methodology[C]// IEEE. 2021 28th Asia-Pacific Software Engineering Conference (APSEC). New York: IEEE, 2021: 559-563. |
[30] |
WANG J, DONG Y. Measurement of Text Similarity: A Survey[J]. Information, 2020, 11(9): 421-438.
doi: 10.3390/info11090421 URL |
[31] |
PRASETYA D, PRASETYA W, HIRASHIMA T. The Performance of Text Similarity Algorithms[J]. International Journal of Advances in Intelligent Informatics, 2018, 4(1): 63-71.
doi: 10.26555/ijain.v4i1.152 URL |
[32] | NORA RAJU T, RAHANA P A, MONCY R, et al. Sentence Similarity-A State of Art Approaches[C]// IEEE. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). New York: IEEE, 2022: 1-6. |
[33] | PRADHAN N, GYANCHANDANI M, WADHVANI R. A Review on Text Similarity Technique Used in IR and Its Application[J]. International Journal of Computer Applications, 2015, 120(9): 29-34. |
[34] | CHRISTEN P. A Comparison of Personal Name Matching: Techniques and Practical Issues[C]// IEEE. Sixth IEEE International Conference on Data Mining-Workshops (ICDMW’06). New York: IEEE, 2006: 290-294. |
[35] | DU M, LI F, ZHENG G, et al. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1285-1298. |
[36] | GANTIKOW H, REICH C, KNAHL M, et al. Rule-Based Security Monitoring of Containerized Environments[J]. Cloud Computing and Services Science, 2020, 1218(8): 66-86. |
[37] | GUO R, ZENG J. Phantom Attack: Evading System Call Monitoring[EB/OL]. [2023-04-10]. https://connect.ed-diamond.com/misc/misc-130/introduction-a-tetragon-observabilite-et-securite-temps-reel-basees-sur-ebpf. |
[38] | Massachusetts Institute of Technology Lincoln Laboratory. DARPA Intrusion Detection Evaluation Data Set[EB/OL]. (1999-05-12)[2023-05-10]. https://www.ll.mit.edu/ideval/data/1999data.html. |
[39] | University of New Mexico Computer Science Department Farris Engineering Center. Computer Immune Systems-Data Sets and Software[EB/OL]. [2023-03-10]. https://www.cs.unm.edu/-immsec/systemcalls.htm. |
[40] | CREECH G, HU J. Generation of a New IDS Test Dataset: Time to Retire the KDD Collection[C]// IEEE. 2013 IEEE Wireless Communications and Networking Conference (WCNC). New York: IEEE, 2013: 4487-4492. |
[41] |
HAIDER W, HU J, SLAY J, et al. Generating Realistic Intrusion Detection System Dataset Based on Fuzzy Qualitative Modeling[J]. Journal of Network and Computer Applications, 2017, 87: 185-192.
doi: 10.1016/j.jnca.2017.03.018 URL |
[42] | GRIMMER M. LID-DS[EB/OL]. (2021-04-05)[2023-03-10]. https://github.com/LID-DS/LID-DS. |
[43] | WU S. Dataset Recaptured from the Scenarios in LID-DS[EB/OL]. (2023-02-01)[2023-03-10]. https://github.com/wsl-fd/dataset_RADSCCBUSCRG. |
[1] | 秦中元, 马楠, 余亚聪, 陈立全. 基于双重图神经网络和自编码器的网络异常检测[J]. 信息网络安全, 2023, 23(9): 1-11. |
[2] | 蒋英肇, 陈雷, 闫巧. 基于双通道特征融合的分布式拒绝服务攻击检测算法[J]. 信息网络安全, 2023, 23(7): 86-97. |
[3] | 施园, 李杨, 詹孟奇. 一种面向微服务的多维度根因定位算法[J]. 信息网络安全, 2023, 23(3): 73-83. |
[4] | 夏懿航, 张志龙, 王木子, 陈力波. 基于依赖关系的容器供应链脆弱性检测方法[J]. 信息网络安全, 2023, 23(2): 76-84. |
[5] | 廖丽云, 张伯雷, 吴礼发. 基于代价敏感学习的物联网异常检测模型[J]. 信息网络安全, 2023, 23(11): 94-103. |
[6] | 张玉臣, 李亮辉, 马辰阳, 周洪伟. 一种融合变量的日志异常检测方法[J]. 信息网络安全, 2023, 23(10): 16-20. |
[7] | 顾兆军, 刘婷婷, 高冰, 隋翯. 基于GAN-Cross的工控系统类不平衡数据异常检测[J]. 信息网络安全, 2022, 22(8): 81-89. |
[8] | 周婧怡, 李红娇. 针对PMU测量的虚假数据注入攻击检测方法[J]. 信息网络安全, 2022, 22(5): 75-83. |
[9] | 陈彬杰, 魏福山, 顾纯祥. 基于KNN的具有隐私保护功能的区块链异常交易检测[J]. 信息网络安全, 2022, 22(3): 78-84. |
[10] | 徐茹枝, 吕畅冉, 龙燕, 刘远彬. 工业控制系统高隐蔽性数据攻击防御方法研究[J]. 信息网络安全, 2022, 22(12): 34-46. |
[11] | 郭森森, 王同力, 慕德俊. 基于生成对抗网络与自编码器的网络流量异常检测模型[J]. 信息网络安全, 2022, 22(12): 7-15. |
[12] | 牛艺诺, 张逸飞, 高能, 马存庆. 融合时序和逻辑关系的日志异常检测系统设计[J]. 信息网络安全, 2022, 22(11): 1-6. |
[13] | 黄子龙, 詹东阳, 叶麟, 张宏莉. 一种基于虚拟机自省的安全容器管理方法[J]. 信息网络安全, 2022, 22(11): 55-61. |
[14] | 秦中元, 胡宁, 方兰婷. 基于免疫仿生机理和图神经网络的网络异常检测方法[J]. 信息网络安全, 2021, 21(8): 10-16. |
[15] | 徐洪平, 马泽文, 易航, 张龙飞. 基于卷积循环神经网络的网络流量异常检测技术[J]. 信息网络安全, 2021, 21(7): 54-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||