信息网络安全 ›› 2023, Vol. 23 ›› Issue (10): 16-20.doi: 10.3969/j.issn.1671-1122.2023.10.003
收稿日期:
2023-06-04
出版日期:
2023-10-10
发布日期:
2023-10-11
通讯作者:
周洪伟
E-mail:hong_wei_zhou@126.com
作者简介:
张玉臣(1977—),男,河南,教授,博士,主要研究方向为保密管理|李亮辉(2000—),男,河北,本科,主要研究方向为保密管理|马辰阳(2000—),男,河南,本科,主要研究方向为网络信息防御|周洪伟(1979—),男,重庆,副教授,博士,主要研究方向为网络信息安全
基金资助:
ZHANG Yuchen, LI Lianghui, MA Chenyang, ZHOU Hongwei()
Received:
2023-06-04
Online:
2023-10-10
Published:
2023-10-11
摘要:
为了充分挖掘日志中变量的潜能,优化日志异常检测效果,文章提出一种融合变量的日志异常检测方法SiEv。首先,该方法可以识别主体变量,并根据主体变量将日志划分为不同片段;然后,SiEv以这些日志片段为输入,基于长短期记忆网络(Long Short-Term Memory,LSTM)训练或检测异常,从而避免不同主体的日志序列特征相互干扰;最后,根据日志片段将SiEv划分为多个类别,从不同角度检测日志。为了验证文章所提方法的有效性,SiEv对Loghub所提供的日志数据集进行测试。实验结果表明,SiEv能够发现多种类型日志中存在的异常,识别同一主体的活动行为模式和变化趋势。
中图分类号:
张玉臣, 李亮辉, 马辰阳, 周洪伟. 一种融合变量的日志异常检测方法[J]. 信息网络安全, 2023, 23(10): 16-20.
ZHANG Yuchen, LI Lianghui, MA Chenyang, ZHOU Hongwei. A Log Anomaly Detection Method with Variables[J]. Netinfo Security, 2023, 23(10): 16-20.
表1
常见4种日志类型与主体变量位置规则集
日志类型 | 主体变量位置规律 |
---|---|
Hadoop | <yyyy-MM-dd HH:mm:ss, SSS>|<Log Level>|<主体变量>|<log中的message> |
HDFS | <yyMMdd HHmmss>|<Pid>|<Log Level>|<主体变量>|<log中的message> |
BGL | <Lable>|<nnnnnnnnnn>|<yyyy.MM.dd>|<Node><Time>|<NodeRepeat>|<Type>| <主体变量>|<Log level>|<log中的message> |
OpenStack | <Logrecord>|< yyyy-MM-dd HH:mm:ss, SSS>|<Pid>|<Log Level>|<主体变量>| <ADDR>|< log中的message> |
[1] | HE Shilin, HE Pinjia, CHEN Zhuangbin, et al. A Survey on Automated Log Analysis for Reliability Engineering[J]. ACM Computing Surveys (CSUR), 2021, 54(6): 1-37. |
[2] | OLINER A, GANAPATHI A, XU Wei. Advances and Challenges in Log Analysis[J]. Communications of the ACM, 2012, 55(2): 55-61. |
[3] |
LIAO H J, LIN C H R, LIN Y C, et al. Intrusion Detection System: A Comprehensive Review[J]. Journal of Network and Computer Applications, 2013, 36(1): 16-24.
doi: 10.1016/j.jnca.2012.09.004 URL |
[4] | LANDAUER M, SKOPIK F, WURZENBERGER M, et al. System Log Clustering Approaches for Cyber Security Applications: A Survey[EB/OL]. (2020-05-01) [2023-05-30]. https://www.sciencedirect.com/science/article/pii/S0167404820300250. |
[5] | HE Shilin, ZHU Jieming, HE Pinjia, et al. Experience Report: System Log Analysis for Anomaly Detection[C]// IEEE. 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE). New York: IEEE, 2016: 207-218. |
[6] | KRUEGEL C, VIGNA G. Anomaly Detection of Web-Based Attacks[C]// ACM. Proceedings of the 10th ACM Conference on Computer and Communications Security. New York: ACM, 2003: 251-261. |
[7] | LANDAUER M, WURZENBERGER M, SKOPIK F, et al. Dynamic Log File Analysis: An Unsupervised Cluster Evolution Approach for Anomaly Detection[J]. Computers & Security, 2018(79): 94-116. |
[8] | DU Min, LI Feifei, ZHENG Guineng, et al. Deeplog: Anomaly Detection and Diagnosis from System Logs Through Deep Learning[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1285-1298. |
[9] | MENG Weibin, LIU Ying, ZHU Yichen, et al. LogAnomaly: Unsupervised Detection of Sequential and Quantitative Anomalies in Unstructured Logs[C]// ACM. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI). New York: ACM, 2019: 4739-4745. |
[10] | YANG Ruipeng, QU Dan, GAO Ying, et al. nLSALog: An Anomaly Detection Framework for Log Sequence in Security Management[J]. IEEE Access, 2019(7): 181152-181164. |
[11] | ZHU Bei, LI Jing, GU Rongbin, et al. An Approach to Cloud Platform Log Anomaly Detection Based on Natural Language Processing and LSTM[C]// ACM. 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence. New York: ACM, 2020: 1-7. |
[12] | LANDAUER M, ONDER S, SKOPIK F, et al. Deep Learning for Anomaly Detection in Log Data: A Survey[EB/OL]. (2023-05-15) [2023-05-30]. https://arxiv.org/abs/2207.03820. |
[13] | LE V H,ZHANG Hongyu. Log-Based Anomaly Detection without Log Parsing[C]// IEEE. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). New York: IEEE, 2021: 492-504. |
[14] | HE Shilin, ZHU Jieming, HE Pinjia, et al. Loghub: A Large Collection of System Log Datasets Towards Automated Log Analytics[EB/OL]. (2020-08-14) [2023-05-30]. https://arxiv.org/abs/2008.06448. |
[15] | XU Wei, HUANG Ling, FOX A, et al. Detecting Large-Scale System Problems by Mining Console Logs[C]// ACM. Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. New York: ACM, 2009: 117-132. |
[16] | HAN Shangbin, WU Qianhong, ZHANG Han, et al. Log-Based Anomaly Detection with Robust Feature Extraction and Online Learning[J]. IEEE Transactions on Information Forensics and Security, 2021(16): 2300-2311. |
[17] | CAO Qimin, QIAO Yinrong, LYU Zhong. Machine Learning to Detect Anomalies in Web Log Analysis[C]// IEEE. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). New York: IEEE, 2017: 519-523. |
[18] | YING Shi, WANG Bingming, WANG Lu, et al. An Improved KNN-Based Efficient Log Anomaly Detection Method with Automatically Labeled Samples[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2021, 15(3): 1-22. |
[19] | WURZENBERGER M, SKOPIK F, LANDAUER M, et al. Incremental Clustering for Semi-Supervised Anomaly Detection Applied on Log Data[C]// ACM. Proceedings of the 12th International Conference on Availability, Reliability and Security. New York: ACM, 2017: 1-6. |
[20] | ZHANG Xu, XU Yong, LIN Qingwei, et al. Robust Log-Based Anomaly Detection on Unstable Log Data[C]// ACM. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2019: 807-817. |
[21] | BARIL X, COUSTIE O, MOTHE J, et al. Application Performance Anomaly Detection with LSTM on Temporal Irregularities in Logs[C]// ACM. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1961-1964. |
[1] | 秦中元, 马楠, 余亚聪, 陈立全. 基于双重图神经网络和自编码器的网络异常检测[J]. 信息网络安全, 2023, 23(9): 1-11. |
[2] | 蒋英肇, 陈雷, 闫巧. 基于双通道特征融合的分布式拒绝服务攻击检测算法[J]. 信息网络安全, 2023, 23(7): 86-97. |
[3] | 施园, 李杨, 詹孟奇. 一种面向微服务的多维度根因定位算法[J]. 信息网络安全, 2023, 23(3): 73-83. |
[4] | 谭柳燕, 阮树骅, 杨敏, 陈兴蜀. 基于深度学习的教育数据分类方法[J]. 信息网络安全, 2023, 23(3): 96-102. |
[5] | 陈立全, 薛雨欣, 江英华, 朱雅晴. 基于国密SM2算法的证书透明日志系统设计[J]. 信息网络安全, 2023, 23(11): 9-16. |
[6] | 廖丽云, 张伯雷, 吴礼发. 基于代价敏感学习的物联网异常检测模型[J]. 信息网络安全, 2023, 23(11): 94-103. |
[7] | 张光华, 刘永升, 王鹤, 于乃文. 基于BiLSTM和注意力机制的智能合约漏洞检测方案[J]. 信息网络安全, 2022, 22(9): 46-54. |
[8] | 顾兆军, 刘婷婷, 高冰, 隋翯. 基于GAN-Cross的工控系统类不平衡数据异常检测[J]. 信息网络安全, 2022, 22(8): 81-89. |
[9] | 周婧怡, 李红娇. 针对PMU测量的虚假数据注入攻击检测方法[J]. 信息网络安全, 2022, 22(5): 75-83. |
[10] | 刘吉强, 何嘉豪, 张建成, 黄学臻. 基于解析器树的日志压缩优化方法[J]. 信息网络安全, 2022, 22(4): 30-39. |
[11] | 陈彬杰, 魏福山, 顾纯祥. 基于KNN的具有隐私保护功能的区块链异常交易检测[J]. 信息网络安全, 2022, 22(3): 78-84. |
[12] | 徐茹枝, 吕畅冉, 龙燕, 刘远彬. 工业控制系统高隐蔽性数据攻击防御方法研究[J]. 信息网络安全, 2022, 22(12): 34-46. |
[13] | 银鹰, 周志洪, 姚立红. 基于LSTM的CAN入侵检测模型研究[J]. 信息网络安全, 2022, 22(12): 57-66. |
[14] | 郭森森, 王同力, 慕德俊. 基于生成对抗网络与自编码器的网络流量异常检测模型[J]. 信息网络安全, 2022, 22(12): 7-15. |
[15] | 牛艺诺, 张逸飞, 高能, 马存庆. 融合时序和逻辑关系的日志异常检测系统设计[J]. 信息网络安全, 2022, 22(11): 1-6. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 231
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||