信息网络安全 ›› 2023, Vol. 23 ›› Issue (7): 86-97.doi: 10.3969/j.issn.1671-1122.2023.07.009

• 技术研究 • 上一篇    下一篇

基于双通道特征融合的分布式拒绝服务攻击检测算法

蒋英肇, 陈雷, 闫巧()   

  1. 深圳大学计算机与软件学院,深圳 518060
  • 收稿日期:2023-03-27 出版日期:2023-07-10 发布日期:2023-07-14
  • 通讯作者: 闫巧 yanq@szu.edu.cn
  • 作者简介:蒋英肇(1999—),男,江西,硕士研究生,主要研究方向为模型反演攻击|陈雷(1996—),男,湖南,硕士研究生,主要研究方向为入侵检测|闫巧(1972—),女,广西,教授,博士,CCF会员,主要研究方向为网络安全和人工智能
  • 基金资助:
    国家自然科学基金(61976142);深圳市科技计划项目(JCYJ20210324093609025)

Distributed Denial of Service Attack Detection Algorithm Based on Two-Channel Feature Fusion

JIANG Yingzhao, CHEN Lei, YAN Qiao()   

  1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
  • Received:2023-03-27 Online:2023-07-10 Published:2023-07-14

摘要:

随着物联网的快速发展,接入网络的设备数量迅速增长,导致分布式拒绝服务(Distributed Denial of Service,DDoS)攻击往往具有攻击方式多样、迅速多变的特点。面对大流量且攻击方式多变的混合DDoS攻击,现有的基于统计分析的检测方法过于依赖人为设置阈值,而基于机器学习的异常检测方法存在误报率和漏报率高等问题。因此,文章提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和注意力机制的双通道融合检测模型DCFD-CA,该模型将统计特征样本分别输入基于CNN的局部特征提取通道和基于注意力机制的全局特征提取通道,利用两个通道结构的差异化达到不同的效果,使用CNN可以抽象出局部特征值之间的相关关系,使用注意力机制可以对重要的特征分配更多的权重。为了融合两个通道的功能,首先对各通道输出的抽象特征进行归一化操作,然后利用堆叠方式融合两个不同通道的特征数据,最后通过三层神经网络进行检测分类。在CICIDS2017-DDoS、CICIDS2018-DDoS和CICDDoS2019公开数据集上进行实验,DCFD-CA模型的F1分数分别是0.9863、0.9996和0.9998,均优于SAE-MLP、Composite DNN等模型。

关键词: DDoS攻击, 注意力机制, 卷积神经网络, 异常检测, 深度学习

Abstract:

With the rapid development of the Internet of things, the number of devices accessing the network is increasing rapidly, so the distributed denial of service (DDoS) attacks often have the characteristics of various attack methods and rapid changes. To deal with mixed and variable DDoS attacks with large traffic, the existing detection methods based on statistical analysis rely too much on artificially setting thresholds, while the anomaly detection methods based on machine learning have the problems of high false positive rate and high false negative rate. Therefore, this paper proposed a two-channel feature fusion detection model based on convolutional neural network (CNN) and attention mechanism, which was DCFD-CA. The model inputted the statistical feature samples into the local feature extraction channel based on CNN and the global feature extraction channel based on the attention mechanism respectively, and used the difference of the two model structures to achieve different effects. The former could abstract the relationship between local feature values, and the latter could assign more weight to important features. In order to fuse the functions of the two models, the abstract features output by each channel were normalized, and then the feature data of two different channels was fused by stacking, and finally the three-layer neural network was used for detection and classification. Conducting experiments on the public datasets CICIDS2017-DDoS, CICIDS2018-DDoS and CICDDoS2019, the F1 scores of the DCFD-CA model are 0.9863, 0.9996 and 0.9998 respectively, which are better than SAE-MLP, composite DNN models.

Key words: DDoS attack, attention mechanism, convolutional neural network, anomaly detection, deep learning

中图分类号: