信息网络安全 ›› 2023, Vol. 23 ›› Issue (6): 74-90.doi: 10.3969/j.issn.1671-1122.2023.06.008

• 技术研究 • 上一篇    下一篇

面向调制识别的对抗样本研究综述

蒋曾辉1, 曾维军1(), 陈璞1, 武士涛2   

  1. 1.陆军工程大学通信工程学院,南京 210001
    2.中国人民解放军31693部队,哈尔滨 150036
  • 收稿日期:2023-04-23 出版日期:2023-06-10 发布日期:2023-06-20
  • 通讯作者: 曾维军 zwj3103@126.com
  • 作者简介:蒋曾辉(1998—),男,湖南,硕士研究生,主要研究方向为信号处理、对抗攻击、对抗防御|曾维军(1986—),男,江西,讲师,博士,主要研究方向为信号处理与机器学习|陈璞(1992—),男,吉林,讲师,硕士,主要研究方向为通信网络技术|武士涛(1986—),男,山东,工程师,主要研究方向为通信技术
  • 基金资助:
    国家自然科学基金(62001515)

Review of Adversarial Samples for Modulation Recognition

JIANG Zenghui1, ZENG Weijun1(), CHEN Pu1, WU Shitao2   

  1. 1. Institute of Communication Engineering, Army Engineering University of PLA, Nanjing 210001, China
    2. 31693 Troops of PLA, Harbin 150036, China
  • Received:2023-04-23 Online:2023-06-10 Published:2023-06-20

摘要:

调制方式识别是认知无线电、电磁对抗等领域中的关键一环,也是进行接收机高效信号处理的重要前提。深度学习具有自主分析、自动特征提取和非线性拟合等传统手段无法比拟的独特优势,其在调制方式识别中表现出了具大潜力,但深度学习模型容易受到对抗样本的攻击,对调制识别任务造成严重影响。尽管对抗样本攻击在计算机视觉、自然语言处理等领域得到了广泛研究,但其在调制识别领域的研究成果较为零散。本文基于调制识别的独特特性,介绍了基于深度学习的调制识别技术,构建了调制识别的问题模型,阐述了目前常见的神经网络在调制识别中的应用现状并列举和对比了调制识别常用数据集及其仿真结果。通过回顾攻击类型、对抗样本生成和防御策略总结了最新的研究成果,建立了不同攻击和防御类别的分类法,并讨论了对抗样本在无线通信中的未来前景。

关键词: 调制识别, 神经网络, 对抗样本, 对抗防御

Abstract:

Modulation recognition is a key component in the fields of cognitive radio, electronic warfare, and other related areas. It is also an important prerequisite for efficient signal processing in receivers. Due to the unique advantages of deep learning, such as autonomous analysis, automatic feature extraction, and nonlinear fitting, which traditional methods cannot match, it has great potential in modulation recognition. However, deep learning models are vulnerable to adversarial attacks, which seriously affect the task of modulation recognition. Although adversarial sample attacks have been widely studied in the fields of computer vision and natural language processing, research results in the field of modulation recognition are relatively scattered. This article introduced the modulation recognition technology based on deep learning, established the problem model of modulation recognition, and elaborated on the application status of common neural networks in modulation recognition, as well as listed and compared commonly used datasets and simulation results of modulation recognition. By reviewing attack types, adversarial sample generation, and defense strategies, we summarized the latest research results, established a classification system for different types of attacks and defence, and discussed the future prospects of adversarial samples in wireless communication.

Key words: modulation recognition, neural networks, adversarial samples, adversarial defence

中图分类号: