信息网络安全 ›› 2023, Vol. 23 ›› Issue (1): 93-102.doi: 10.3969/j.issn.1671-1122.2023.01.011

• 理论研究 • 上一篇    

一种基于跨域对抗适应的图像信息隐藏算法

李季瑀1, 付章杰1,2(), 张玉斌3   

  1. 1.南京信息工程大学数字取证教育部工程研究中心,南京 210044
    2.西安电子科技大学综合业务网理论及关键技术国家重点实验室,西安 710126
    3.渤海大学数学科学学院,锦州 121013
  • 收稿日期:2022-10-21 出版日期:2023-01-10 发布日期:2023-01-19
  • 通讯作者: 付章杰 E-mail:fzj@nuist.edu.cn
  • 作者简介:李季瑀(1995—),男,山东,硕士研究生,主要研究方向为信息隐藏、深度学习|付章杰(1983—),男,河南,教授,博士,主要研究方向为数字取证、人工智能|张玉斌(1965—),女,辽宁,副教授,本科,主要研究方向为应用数学
  • 基金资助:
    国家自然科学基金(62172232);国家重点研发计划(2021YFB2700900);江苏省杰出青年基金(BK20200039)

An Image Information Hiding Algorithm Based on Cross-Domain Adversarial Adaptation

LI Jiyu1, FU Zhangjie1,2(), ZHANG Yubin3   

  1. 1. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710126, China
    3. College of Mathematical Sciences, Bohai University, Jinzhou 121013, China
  • Received:2022-10-21 Online:2023-01-10 Published:2023-01-19
  • Contact: FU Zhangjie E-mail:fzj@nuist.edu.cn

摘要:

图像信息隐藏是保障信息安全的重要手段。随着深度学习的快速发展,各类基于该技术的以图藏图式隐写算法被提出,它们大多在图像质量、隐藏安全性或嵌入容量等方面的均衡性上存在不足。针对该问题,文章提出了一种基于跨域对抗适应的图像信息隐藏算法,首先,设计超分辨率网络,将秘密信息藏入放大和缩小后不变的图像内容中,提高秘密信息的嵌入容量;然后,在编码网络中加入注意力机制,使编码网络能够关注主要特征并抑制冗余特征,提高生成图像的分辨率;最后,在生成器网络中加入域适应损失指导载密图像的生成,模型整体采用生成对抗的方式进行训练,减小载体图像和载密图像之间的跨域差异。实验结果表明,与其他以图藏图隐写算法相比,文章所提算法在保证图像质量的同时,提高了信息隐藏的安全性和嵌入容量。

关键词: 信息隐藏, 生成对抗网络, 域适应, 自注意力机制

Abstract:

Image information hiding is one of the important methods to ensure information security. With the growth of deep learning, numerous deep learning-based image to image steganography models have been presented. Most of them are deficient in terms of image quality, hiding security, or embedding capability balance. So, this paper proposed an image information hiding algorithm based on cross-domain adversarial adaptation to address the above problems. First, a super-resolution network was built to embed the secret information into the image content unaffected by zooming in and out, to increase the secret information’s embedding capability. Then, an attention mechanism was introduced to the encoding network to enable the network to focus on the primary features and suppress superfluous features, so enhancing the image’s resolution. Finally, a domain adaption loss was introduced to the generator network to guide the production of the stego image, and the model was trained in a generative adversarial way to reduce the cross-domain difference between the carrier image and the stego image. The experimental results demonstrate that, compared to other steganography techniques, the proposed algorithm improves the security and embedding capability of information hiding while maintaining image quality.

Key words: information hiding, generating adversarial network, domain adaptation, self-attention mechanism

中图分类号: