信息网络安全 ›› 2023, Vol. 23 ›› Issue (1): 93-102.doi: 10.3969/j.issn.1671-1122.2023.01.011
• 理论研究 • 上一篇
收稿日期:
2022-10-21
出版日期:
2023-01-10
发布日期:
2023-01-19
通讯作者:
付章杰
E-mail:fzj@nuist.edu.cn
作者简介:
李季瑀(1995—),男,山东,硕士研究生,主要研究方向为信息隐藏、深度学习|付章杰(1983—),男,河南,教授,博士,主要研究方向为数字取证、人工智能|张玉斌(1965—),女,辽宁,副教授,本科,主要研究方向为应用数学
基金资助:
LI Jiyu1, FU Zhangjie1,2(), ZHANG Yubin3
Received:
2022-10-21
Online:
2023-01-10
Published:
2023-01-19
Contact:
FU Zhangjie
E-mail:fzj@nuist.edu.cn
摘要:
图像信息隐藏是保障信息安全的重要手段。随着深度学习的快速发展,各类基于该技术的以图藏图式隐写算法被提出,它们大多在图像质量、隐藏安全性或嵌入容量等方面的均衡性上存在不足。针对该问题,文章提出了一种基于跨域对抗适应的图像信息隐藏算法,首先,设计超分辨率网络,将秘密信息藏入放大和缩小后不变的图像内容中,提高秘密信息的嵌入容量;然后,在编码网络中加入注意力机制,使编码网络能够关注主要特征并抑制冗余特征,提高生成图像的分辨率;最后,在生成器网络中加入域适应损失指导载密图像的生成,模型整体采用生成对抗的方式进行训练,减小载体图像和载密图像之间的跨域差异。实验结果表明,与其他以图藏图隐写算法相比,文章所提算法在保证图像质量的同时,提高了信息隐藏的安全性和嵌入容量。
中图分类号:
李季瑀, 付章杰, 张玉斌. 一种基于跨域对抗适应的图像信息隐藏算法[J]. 信息网络安全, 2023, 23(1): 93-102.
LI Jiyu, FU Zhangjie, ZHANG Yubin. An Image Information Hiding Algorithm Based on Cross-Domain Adversarial Adaptation[J]. Netinfo Security, 2023, 23(1): 93-102.
表1
Alaska2数据集上不同方法的视觉质量对比(PSNR分值/SSIM百分比)
BALUJA | HiDDeN | UDH | INN | 本文方法 | |
---|---|---|---|---|---|
载体/ 载密 QF=75 QF=85 QF=95 | 33.27/84.3% 35.40/95.9% 36.41/96.6% | 31.21/77.59% 35.183/94.28% 35.87/98.7% | 35.791/91.13% 35.935/96.26% 38.33/98.5% | 36.82/91.45% 39.01/96.6% 39.13/97% | 37.42/94% 37.69/94.32% 37.95/94.7% |
秘密/ 提取 QF=75 QF=85 QF=95 | 30.33/81% 33.465/91.14% 35.89/95.85% | 31.53/82.7% 33.98/94% 34.72/94.8% | 35.22/90.53% 34.97/92.3% 37.18/96.7% | 35.8/92% 38.115/95.8% 39.355/96% | 35.958/92.67% 36.115/91.4% 36.45/93.9% |
[1] |
YU Kunliang, CHEN Liquan, WANG Yu, et al. A Channel Coding Information Hiding Algorithm for Images Based on Uniform Cyclic Shift[J]. Multimedia Tools and Applications, 2022, 81(8): 11279-11300.
doi: 10.1007/s11042-022-12034-8 URL |
[2] | LIN C C, CHANG C C, KAO W J, et al. Efficient Electronic Patient Information Hiding Scheme with Tamper Detection Function for Medical Images[J]. IEEE Access, 2022(10): 18470-18485. |
[3] | PAN Feng, LI Jun, YANG Xiaoyuan. Image Steganography Method Based on PVD and Modulus Function[C]// IEEE. 2011 International Conference on Electronics, Communications and Control (ICECC). New York: IEEE, 2011: 282-284. |
[4] |
MIELIKAINEN J. LSB Matching Revisited[J]. IEEE Signal Processing Letters, 2006, 13(5): 285-287.
doi: 10.1109/LSP.2006.870357 URL |
[5] | COX I J, MILLER M L, BLOOM J A, et al. Digital Watermarking and Steganography[J]. Morgan Kaufmann, 2008, 11: 61-103. |
[6] |
FILLER T, JUDAS J, FRIDRICH J. Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935.
doi: 10.1109/TIFS.2011.2134094 URL |
[7] | VOLKHONSKIY D, BORISENKO B, BURNAEV E. Generative Adversarial Networks for Image Steganography[EB/OL]. (2016-11-05)[2022-09-10]. https://openreview.net/pdf?id=H1hoFU9xe.htm. |
[8] |
TANG Weixuan, LI Bin, TAN Shuquan, et al. CNN-based adversarial embedding for image steganography[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(8): 2074-2087.
doi: 10.1109/TIFS.2019.2891237 URL |
[9] | SHI Haichao, DONG Jing, WANG Wei, et al. Ssgan: Secure Steganography Based on Generative Adversarial Networks[C]// Springer. In Pacific Rim Conference on Multimedia. Berlin: Springer, 2017: 534-544. |
[10] | NGUYEN B C, YOON S M, LEE H-K. Multi Bit Plane Image Steganography[C]// Springer. International Workshop on Digital Watermarking. Berlin:Springer, 2006: 61-70. |
[11] | HETAL S, MUTZEL P. A Graph-Theoretic Approach to Steganography[C]// Springer. IFIP International Conference on Communications and Multimedia Security. Berlin:Springer, 2005: 119-128. |
[12] | PEVNY T, FILLER T, BAS P. Using High-Dimensional Image Models to Perform Highly Undetectable Steganography[C]// Springer. In International Workshop on Information Hiding. Berlin:Springer, 2010: 161-177. |
[13] | HOLUB V, FRIDRICH J. Designing Steganographic Distortion Using Directional Filters[C]// IEEE. 2012 IEEE International Workshop on Information Forensics and Security (WIFS). New York:IEEE, 2012: 234-239. |
[14] | HOLUB V, FRIDRICH J, DENEMARK T. Universal Distortion Function for Steganography in an Arbitrary Domain[J]. EURASIP Journal on Information Security, 2014(1): 1-13. |
[15] | LI Bin, WANG Ming, HUANG Jiwu, et al. A New Cost Function for Spatial Image Steganography[C]// IEEE. 2014 IEEE International Conference on Image Processing (ICIP). New York:IEEE, 2014: 4206-4210. |
[16] |
PEVNY T, BAS P, FRIDRICH J. Steganalysis by Subtractive Pixel Adjacency Matrix[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 215-224.
doi: 10.1109/TIFS.2010.2045842 URL |
[17] | GOODFELLOW L J, POUGET-A J, MIRZA M, et al. Generative Adversarial Nets. Advances in Neural Information Processing Systems[C]// ACM. Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014: 2672-2680. |
[18] | RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[EB/OL]. (2016-01-07)[2022-09-10]. https://arxiv.org/abs/1511.06434.htm. |
[19] | LIU Mingming, ZHANG Minqing, LIU Jia, et al. Coverless Information Hiding Based on Generative Adversarial Networks[J]. Journal of Applied Sciences, 2018, 36(2): 371-382. |
刘明明, 张敏情, 刘佳, 等. 基于生成对抗网络的无载体信息隐藏[J]. 应用科学学报, 2018, 36(2): 371-382. | |
[20] | BI Xinliang, YANG Haibin, YANG Xiaoyuan, et al. Generative Strganography Scheme Based on StarGAN[J]. Netinfo Security, 2020, 20(12): 64-71. |
毕新亮, 杨海滨, 杨晓元, 等. 基于StarGAN的生成式图像隐写方案[J]. 信息网络安全, 2020, 20(12): 64-71. | |
[21] | LIN Zhouhan, FENG Minwei, SANTOS C N, et al. A Structured Self-Attentive Sentence Embedding[J]. arXiv preprint arXiv, 2017, 3(9): 1-15. |
[22] | ZHANG X, KONG X, WANG P, et al. Cover-Source Mismatch in Deep Spatial Steganalysis[C]//Springer. International Workshop on Digital Watermarking. Berlin:Springer, 2019: 71-83. |
[23] | DASTGHEIB M B, JAHROMI M F, NEJAD J T. A Low Cost Image Steganalysis by Using Domain Adaptation[J]. International Journal of Information Science and Management (IJISM), 2018, 16(1): 191-201. |
[24] |
YANG Yong, KONG Xiangwei, WANG Bo, et al. Steganalysis on Internet Images Via Domain Adaptive Classifier[J]. Neurocomputing, 2019, 351: 205-216.
doi: 10.1016/j.neucom.2019.04.025 |
[25] | WANG Yaojie, YANG Xiaoyuan, LIU jia. Cross-Domain Image Steganography Based on GANs[C]// Springer. International Conference on Security with Intelligent Computing and Big-data Services. Berlin:Springer, 2018: 743-755. |
[26] | GABRIEL G. NinaSR: Efficient Small and Large ConvNets for Super-Resolution. GitHub repository[EB/OL]. (2021-08-21)[2022-09-10]. https://github.com/Coloquinte/torchSR. |
[27] |
DUAN Xintao, LIU Nao, GOU Mengxiao, et al. SteganoCNN: Image Steganography with Generalization Ability Based on Convolutional Neural Network[J]. Entropy, 2020, 22(10): 1155.
doi: 10.3390/e22101155 URL |
[28] |
BOROUMAND M, CHEN Mo, FRIDRICH J. Deep Residual Network for Steganalysis of Digital Images[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1181-1193.
doi: 10.1109/TIFS.2018.2871749 URL |
[29] |
BALUJA S. Hiding Images within Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1685-1697.
doi: 10.1109/TPAMI.2019.2901877 pmid: 30835212 |
[30] | ZHU Jiren, KAPLAN R, JOHNSON J, et al. Hidden: Hiding Data with Deep Networks[C]// Springer. European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 682-697. |
[31] | ZHANG Chaoning, BENZ P, KARJAUV A, et al. UDH: Universal Deep Hiding for Steganography, Watermarking, and Light Field Messaging[J]. Advances in Neural Information Processing Systems, 2020, 33: 10223-10234. |
[32] | LU Shaoping, WANG Rong, ZHANG Tao, et al. Large-Capacity Image Steganography Based on Invertible Neural Networks[C]// IEEE. IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 10816-10825. |
[33] | HOLUB V, FRIDRICH J. Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 219-228. |
[1] | 杨婉霞, 陈帅, 管磊, 杨忠良. 宋词自动生成的信息隐藏算法[J]. 信息网络安全, 2022, 22(7): 46-54. |
[2] | 夏强, 何沛松, 罗杰, 刘嘉勇. 基于普遍对抗噪声的高效载体图像增强算法[J]. 信息网络安全, 2022, 22(2): 64-75. |
[3] | 郭森森, 王同力, 慕德俊. 基于生成对抗网络与自编码器的网络流量异常检测模型[J]. 信息网络安全, 2022, 22(12): 7-15. |
[4] | 林文兵, 张敏情, 周能, 孔咏骏. 基于同态加密的密文域可逆信息隐藏技术研究[J]. 信息网络安全, 2021, 21(4): 73-80. |
[5] | 王耀杰, 杨晓元, 刘文超. 基于数字化卡登格的生成图像隐写方案[J]. 信息网络安全, 2021, 21(2): 70-77. |
[6] | 雷雨, 刘佳, 李军, 柯彦. 一种基于条件生成对抗网络的图像隐写方法研究与实现[J]. 信息网络安全, 2021, 21(11): 48-57. |
[7] | 张敏情, 周能, 刘蒙蒙, 柯彦. 同态加密域可逆信息隐藏技术研究[J]. 信息网络安全, 2020, 20(8): 25-36. |
[8] | 彭中联, 万巍, 荆涛, 魏金侠. 基于改进CGANs的入侵检测方法研究[J]. 信息网络安全, 2020, 20(5): 47-56. |
[9] | 毕新亮, 杨海滨, 杨晓元, 黄思远. 基于StarGAN的生成式图像隐写方案[J]. 信息网络安全, 2020, 20(12): 64-71. |
[10] | 唐洪琼, 钮可, 张英男, 杨晓元. 自适应二维直方图迁移的视频可逆隐写算法[J]. 信息网络安全, 2019, 19(9): 106-110. |
[11] | 王耀杰, 钮可, 杨晓元. 基于生成对抗网络的图像隐藏方案[J]. 信息网络安全, 2019, 19(5): 54-60. |
[12] | 欧博, 石向莲. 基于深度无合成误差模型的三维图像可逆信息隐藏方法研究[J]. 信息网络安全, 2018, 18(5): 24-31. |
[13] | 熊金波, 马蓉, 张媛媛, 戴睿煜. 面向社交网络的图片信息隐藏方法与实现[J]. 信息网络安全, 2017, 17(3): 6-8. |
[14] | 陆海宁. 可隐藏搜索模式的对称可搜索加密方案[J]. 信息网络安全, 2017, 17(1): 38-42. |
[15] | 肖迪, 王莹, 常燕廷, 周佳奇. 基于加法同态与多层差值直方图平移的密文图像可逆信息隐藏算法[J]. 信息网络安全, 2016, 16(4): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||