信息网络安全 ›› 2021, Vol. 21 ›› Issue (3): 72-78.doi: 10.3969/j.issn.1671-1122.2021.03.009

• 技术研究 • 上一篇    下一篇

基于空间及能量维度的黑盒对抗样本生成方法

于克辰1(), 郭莉2, 姚萌萌2   

  1. 1.信息工程大学,郑州 450001
    2.江南计算技术研究所,无锡 214063
  • 收稿日期:2020-09-21 出版日期:2021-03-10 发布日期:2021-03-16
  • 通讯作者: 于克辰 E-mail:305810944@qq.com
  • 作者简介:于克辰(1995—),男,辽宁,硕士研究生,主要研究方向为神经网络对抗样本、信息安全|郭莉(1978—),女,湖南,高级工程师,硕士,主要研究方向为信息安全|姚萌萌(1982—),男,山东,工程师,博士,主要研究方向为信息安全
  • 基金资助:
    国家自然科学基金(91430214);核高基重大专项(2017ZX01028101)

The Generation of Black Box Adversarial Sample Based on Spatial and Energy Dimension

YU Kechen1(), GUO Li2, YAO Mengmeng2   

  1. 1. Information Engineering University, Zhengzhou 450001, China
    2. Jiangnan Institute of Computing Technology, Wuxi 214063, China
  • Received:2020-09-21 Online:2021-03-10 Published:2021-03-16
  • Contact: YU Kechen E-mail:305810944@qq.com

摘要:

神经网络在图像识别领域发挥着重要作用,但其会被对抗样本干扰,出现识别错误的情况。经典的对抗样本生成方法在约束变量和衡量指标上有局限性,因此,文章提出一种以余弦相似度为约束的基于空间及能量维度的对抗样本生成方法。该方法在空间维度对原始样本进行平移和旋转,并在能量维度叠加一定强度的高斯噪声,进而生成对抗样本。空间维度的旋转平移及能量维度的噪声在图片生成、传输、处理过程中大概率存在,所以对抗样本生成更自然。实验结果表明,能量维度与空间维度同时作用生成的对抗样本比只进行空间维度变换生成的对抗样本更有效。

关键词: 人工智能, 对抗样本生成, 空间维度, 扰动

Abstract:

As a significant role in image recognition, neural network can be disturbed by adversarial samples, resulting in recognition errors. Considering that classical adversarial sample generation methods are limited in terms of constraint variables and measurement metrics, this paper puts forward an adversarial sample generation method based on spatial and energy dimensions constrained by cosine similarity, which generates an adversarial sample by spatially translating and rotating the original sample and superimposing a certain strength of Gaussian noise on the energy dimension. Compared with the classic artificial perturbations, rotational shift of spatial dimension and noise of energy dimension exist in large probability in picture generation, transmission, and processing, therefore, the generation of adversarial samples is more natural. The experimental results demonstrate that adversarial sample with both energy and spatial dimensions acting simultaneously is more effective than adversarial sample with only spatial dimensions.

Key words: artificial intelligence, adversarial sample generation, spatial dimension, perturbation

中图分类号: