信息网络安全 ›› 2019, Vol. 19 ›› Issue (8): 76-82.doi: 10.3969/j.issn.1671-1122.2019.08.011

• 技术研究 • 上一篇    下一篇

基于请求域名的DNS隐蔽通道检测方法研究

章航1, 郑荣锋2, 彭华2, 刘嘉勇1()   

  1. 1.四川大学网络空间安全学院,四川成都 610065
    2.四川大学电子信息学院,四川成都 610065
  • 收稿日期:2019-04-10 出版日期:2019-08-10 发布日期:2020-05-11
  • 作者简介:

    作者简介:章航(1995—),女,四川,硕士研究生,主要研究方向为网络数据分析与信息安全;郑荣锋(1990—),男,重庆,博士研究生,主要研究方向为网络流量分析、工控系统安全、嵌入式设备安全;彭华(1987—),男,重庆,博士研究生,主要研究方向为通信系统与网络安全、机器学习;刘嘉勇(1962—),男,四川,教授,博士,主要研究方向为网络信息安全、网络信息处理、大数据分析。

  • 基金资助:
    国家自然科学基金[61872255]

Requested Domain Name-based DNS Covert Channel Detection

Hang ZHANG1, Rongfeng ZHENG2, Hua PENG2, Jiayong LIU1()   

  1. 1. College of Cybersecurity, Sichuan University, Chengdu Sichuan 610065, China
    2. College of Electronics and Information, Sichuan University, Chengdu Sichuan 610065, China
  • Received:2019-04-10 Online:2019-08-10 Published:2020-05-11

摘要:

文章以提升机器学习方法实时检测DNS隐蔽通道的准确率,提升机器学习模型应对未知类型DNS隐蔽通道的检测能力为研究目的,提出基于请求域名的DNS隐蔽通道检测方法。以DNS隐蔽通道为研究对象,通过研究分析DNS合法样本和隐蔽通道样本中的请求域名,充分挖掘DNS请求域名中的相关信息,结合包含域名长度、字符占比、随机性特征和语义特征在内的四类属性特征,使用机器学习算法识别DNS隐蔽通道。实验使用Iodine、Dns2tcp和DNSCat三种隐蔽通道工具产生的DNS隐蔽通道样本,结合决策树算法训练分类器,涵盖计算机网络、信息隐藏、异常检测、数据挖掘、自然语言处理等研究范围。实验结果表明,该模型的精确率、召回率、准确率以及识别未经训练的DNS隐蔽通道的能力均得到了提高。

关键词: DNS, 隐蔽通道, 请求域名, 决策树

Abstract:

In order to improve the accuracy of the machine hidden learning channel in real time, and improve the detection ability of the machine learning model to deal with the unknown type of DNS covert channel, this paper proposed a DNS covert channel detection method based on the requested domain name. Taking the DNS covert channel as the research object, through research and analysis of the request domain name in the DNS legal sample and the covert channel sample,this paper utilized relevant information in the request domain name to build features, including domain name length, character proportion, randomness feature, and semantic feature composition, then used the machine learning algorithm to detect the DNS covert channel. This paper first evaluated the proposed method using data collected from the three most commonly used DNS covert channel tools Iodine, Dns2tcp and DNSCat and trained a decision tree classifier, covering computer network, information hiding, anomaly detection, data mining, natural language processing and other research areas. Evaluation results showsthat the model’s precision, recall, accuracyand ability to identify untrained DNS covert channels have been improved.

Key words: domain name system, covert channel, request domain name, decision tree

中图分类号: