信息网络安全 ›› 2025, Vol. 25 ›› Issue (6): 967-976.doi: 10.3969/j.issn.1671-1122.2025.06.011

• 专题论文: 网络主动防御 • 上一篇    下一篇

基于随机博弈和DQN算法的云原生移动目标防御决策方法

耿致远, 许泽轩, 张恒巍()   

  1. 信息工程大学密码工程学院,郑州 450001
  • 收稿日期:2025-01-16 出版日期:2025-06-10 发布日期:2025-07-11
  • 通讯作者: 张恒巍 zhw11qd@163.com
  • 作者简介:耿致远(1996—),男,河南,硕士研究生,主要研究方向为网络主动防御|许泽轩(2004—),男,陕西,本科,主要研究方向为网络空间安全|张恒巍(1978—),男,河南,教授,博士,主要研究方向为网络安全博弈、人工智能对抗攻击与防御。
  • 基金资助:
    国家重点研发计划(2017YFB0801904)

A Decision-Making Method for Cloud-Native Moving Target Defense Based on Stochastic Games and DQN Algorithm

GENG Zhiyuan, XU Zexuan, ZHANG Hengwei()   

  1. School of Cryptography Engineering, Information Engineering University, Zhengzhou 450001, China
  • Received:2025-01-16 Online:2025-06-10 Published:2025-07-11

摘要:

随着云原生系统中集成应用组件的复杂性不断提高,且大部分组件为开源代码,系统组件的漏洞利用已成为影响云原生安全的主要威胁之一。移动目标防御作为一种先进的动态防御机制,被广泛认为是应对该问题的有效手段。然而,在实际应用中,频繁且无序的配置转换可能会使系统运行效率和服务质量降低,进而对资源有限系统的安全性造成不利影响。为解决云原生环境中随机攻防场景下的移动目标防御决策问题,文章结合博弈理论的建模能力与深度强化学习的求解优势,提出一种基于随机博弈和DQN算法的云原生移动目标防御决策方法,实现在大规模策略空间中进行高效最优移动目标防御策略的决策,并通过仿真实验验证了文章所提方法的有效性和实用性。

关键词: 云原生, 漏洞利用, 移动目标防御, 随机博弈, DQN算法

Abstract:

With the increasing complexity of application components in cloud-native systems, and the majority of them being open-source code, vulnerabilities exploitation in these components has become one of the primary threats to cloud-native security. Moving target defense as an advanced dynamic defense mechanism is widely recognized as an effective solution to this issue. However, the frequent and disorderly configuration transitions in the practical application of moving target defense could reduce system efficiency and service quality, potentially negatively impacting the security of resource-constrained systems. To address the strategy problem of moving target defense in cloud-native stochastic attack-defense environments, this paper combined the modeling advantages of game theory and the solution capabilities of deep reinforcement learning, and proposed a cloud-native moving target defense decision-making method based on stochastic games and the DQN algorithm. The aim was to quickly make optimal moving target defense decision in a large-scale strategy space. The effectiveness and practicality of the proposed model and algorithm are verified through simulation experiments.

Key words: cloud-native, vulnerability exploitation, moving target defense, stochastic game, DQN algorithm

中图分类号: