信息网络安全 ›› 2025, Vol. 25 ›› Issue (6): 889-897.doi: 10.3969/j.issn.1671-1122.2025.06.004

• 专题论文: 网络主动防御 • 上一篇    下一篇

基于模型特征方向的分层个性化联邦学习框架

邓东上1, 王伟业2, 张卫东2, 吴宣够2()   

  1. 1.重庆大学计算机学院,重庆 401331
    2.安徽工业大学计算机科学与技术学院,马鞍山 243032
  • 收稿日期:2025-02-28 出版日期:2025-06-10 发布日期:2025-07-11
  • 通讯作者: 吴宣够 wuxgou@ahut.edu.cn
  • 作者简介:邓东上(1998—),男,湖南,博士研究生,主要研究方向为物联网、群智感知、联邦学习|王伟业(1999—),男,安徽,硕士研究生,主要研究方向为个性化联邦学习|张卫东(1998—),男,安徽,博士研究生,主要研究方向为物联网、联邦学习|吴宣够(1979—),男,安徽,教授,博士,主要研究方向为物联网、联邦学习。
  • 基金资助:
    国家自然科学基金(62172003);安徽高校协同创新项目(GXXT-2022-051)

Layered Personalized Federated Learning Guided by Model Feature Orientation

DENG Dongshang1, WANG Weiye2, ZHANG Weidong2, WU Xuangou2()   

  1. 1. College of Computer Science, Chongqing University, Chongqing 401331, China
    2. School of Computer Science and Technology, Anhui University of Technology, Ma’anshan 243032, China
  • Received:2025-02-28 Online:2025-06-10 Published:2025-07-11

摘要:

随着人工智能和工业物联网的快速发展,工业智能化不断加速。用户隐私担忧的加剧使得联邦学习成为一种有前景的解决方案。然而,工业物联网中数据异构性、资源限制及潜在攻击者问题突出。现有的个性化联邦学习虽然为客户端定制模型,但忽略了联邦训练中的聚合偏差。为解决该问题,文章提出基于模型特征方向的分层个性化联邦学习框架,设计高效聚合机制,在不增加通信开销的前提下为各客户端精确捕获信息。该框架结合自适应模型量化机制确定聚合权重,应用分层动态聚合机制定制最优全局模型。在Fashion-MNIST和CWRU数据集上的实验结果表明,该方法显著优于4种基线方法,展现出更高的性能和效率。

关键词: 工业物联网, 隐私担忧, 个性化联邦学习

Abstract:

With the rapid advancement of artificial intelligence and the industrial Internet of Things (IIoT), industrial intelligence accelerates. Federated learning (FL) has emerged as a promising solution due to growing privacy concerns. However, FL in IIoT faces challenges like data heterogeneity, resource constraints, and adversarial threats. Existing personalized FL methods customized models for individual clients but ignored aggregation biases during training. To address this issue, this paper proposed a layered personalized FL framework guided by model feature orientations. The framework introduced an efficient aggregation mechanism that captured client-specific information without extra communication costs. It combined an adaptive model quantization mechanism for aggregation weights and a layered dynamic strategy to tailor global models for each client. Experiments on Fashion-MNIST and CWRU datasets show that our approach outperforms baselines in both performance and efficiency.

Key words: industrial internet of things, privacy concerns, personalized federated learning

中图分类号: