信息网络安全 ›› 2025, Vol. 25 ›› Issue (4): 578-586.doi: 10.3969/j.issn.1671-1122.2025.04.006

• 专题论文:智能系统安全 • 上一篇    下一篇

基于DACDiff的分布式电源调度控制系统FDIAs防御方法

李元诚1(), 孙鹤洋1, 张桐1, 张贺方1, 杨立群2   

  1. 1.华北电力大学控制与计算机工程学院,北京 102206
    2.北京航空航天大学网络空间安全学院,北京 100191
  • 收稿日期:2024-11-22 出版日期:2025-04-10 发布日期:2025-04-25
  • 通讯作者: 李元诚 ncepua@163.com
  • 作者简介:李元诚(1970—),男,山东,教授,博士,CCF会员,主要研究方向为电力信息安全与隐私保护、人工智能及安全|孙鹤洋(1999—),女,陕西,硕士研究生,主要研究方向为电力信息安全|张桐(2001—),女,山西,硕士研究生,主要研究方向为电力信息安全|张贺方(2000—),男,河南,硕士研究生,主要研究方向为电力信息安全|杨立群(1990—),男,河北,副教授,博士,CCF会员,主要研究方向为网络安全、工业互联网和工控安全
  • 基金资助:
    国家自然科学基金(62302025);国家自然科学基金(U2333205);国家电网有限公司总部科技项目(5108-202325046A-1-1-ZN)

DACDiff-Based Defense against FDIAs in Distributed Generation Dispatch and Control System

LI Yuancheng1(), SUN Heyang1, ZHANG Tong1, ZHANG Hefang1, YANG Liqun2   

  1. 1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    2. School of Cyber Science and Technology, Beihang University, Beijing 100191, China
  • Received:2024-11-22 Online:2025-04-10 Published:2025-04-25

摘要:

随着可再生能源的发展,分布式电源的应用规模持续扩大,其在高效能源利用和绿色环保方面的优势得到了广泛认可。然而,由于系统的分散性、复杂性和不确定性,使分布式电源调控更易受到虚假数据注入攻击(FDIAs)的安全威胁。FDIAs篡改实时量测数据干扰状态估计和调度决策,可能导致电力系统的不稳定、运行失误,甚至引发严重的电力事故。为确保新型电力系统的安全可靠运行,文章提出一种针对分布式电源调控FDIAs的DACDiff防御方法,该模型基于改进的条件扩散模型,采用DACformer作为去噪网络,采用双重注意力机制捕捉时间序列中的依赖性,通过上采样和多尺度设计更好保留数据特征,用高度逼真的生成数据替换受攻击影响的数据,以保证状态估计的连续性和调控指令的正确性。在电力数据集上的仿真实验结果表明,DACDiff模型在数据生成质量和防御能力方面表现优异,能够有效恢复受到FDIAs影响的分布式电源调控系统,提供了更优的安全性与稳定性。

关键词: 分布式电源调控, 虚假数据注入攻击, 主动防御, 扩散模型, 双重注意力机制

Abstract:

With the growth of renewable energy, the application of distributed generation (DG) systems has expanded, offering advantages in energy efficiency and environmental sustainability. However, the decentralized and complex nature of DG systems makes them vulnerable to False Data Injection Attacks (FDIAs), which tamper with real-time measurements, disrupt state estimation, and compromise scheduling decisions. These attacks can lead to instability, operational errors, and even power outages. To enhance system security, this paper proposed DACDiff, a defense method against FDIAs in DG control. Based on an improved conditional diffusion model, DACDiff employed DACformer as a denoising network with a dual-attention mechanism to capture dependencies in time series data. Through upsampling and a multi-scale design, the model preserved data features, generating realistic replacements for compromised data to maintain state estimation and control accuracy. Simulation results on power system datasets show that DACDiff achieves high data generation quality and strong defense capability, effectively restoring DG control systems and enhancing security and stability.

Key words: distributed generation dispatch and control, false data injection attacks, active defence, diffusion model, dual attention net

中图分类号: