信息网络安全 ›› 2025, Vol. 25 ›› Issue (1): 110-123.doi: 10.3969/j.issn.1671-1122.2025.01.010

• 理论研究 • 上一篇    下一篇

面向高速网络流实时处理的资源自适应伸缩方法

康仕才1,2,3, 陈良国1,2,3, 陈兴蜀1,2,3()   

  1. 1.四川大学网络空间安全学院,成都 610065
    2.数据安全防护与智能治理教育部重点实验室,成都 610065
    3.四川大学网络空间安全研究院,成都 610065
  • 收稿日期:2024-10-22 出版日期:2025-01-10 发布日期:2025-02-14
  • 通讯作者: 陈兴蜀 E-mail:chenxsh@scu.edu.cn
  • 作者简介:康仕才(2000—),男,四川,硕士研究生,主要研究方向为数据安全管理|陈良国(1993—),男,贵州,博士研究生,主要研究方向为大数据和网络安全|陈兴蜀(1968—),女,贵州,教授,博士,主要研究方向为云计算安全、数据安全、威胁检测、开源情报和人工智能安全
  • 基金资助:
    中央高校基础研究基金(SCU2024D01);中央高校基础研究基金(2023SCU12126);中央高校基础研究基金(2022SCU12116);四川大学理工科发展计划(2020SCUNG129)

Resource Adaptive Scaling Method for Real-Time Processing of High-Speed Network Streaming

KANG Shicai1,2,3, CHEN Liangguo1,2,3, CHEN Xingshu1,2,3()   

  1. 1. School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China
    2. Key Laboratory of Data Protection and Intelligent Management, Ministry of Education, Chengdu 610065, China
    3. Cyber Science Research Institute, Sichuan University, Chengdu 610065, China
  • Received:2024-10-22 Online:2025-01-10 Published:2025-02-14
  • Contact: CHEN Xingshu E-mail:chenxsh@scu.edu.cn

摘要:

在流处理中,静态资源配置难以应对实时变化且具有突发性的流数据负载,因此需要引入弹性机制。然而,在确定弹性伸缩时机和伸缩策略时,若未充分考虑伸缩的成本与收益之间的平衡,则会引发资源频繁调整,导致系统不稳定或效率降低。为解决这一问题,文章提出一种资源自适应伸缩算法,该算法通过分析流数据负载规模和资源使用情况,确定资源伸缩的方向和规模。同时,该算法采用一种最大平均处理吞吐量方法,以伸缩操作前后的处理吞吐量为量化指标评估资源伸缩所带来的开销与收益,优化伸缩策略,避免不必要的资源频繁调整。基于该算法,文章设计了网络流弹性处理框架,以实现框架的灵活扩展与资源的动态调整。在不同网络带宽场景下对框架进行测试,实验结果表明,该算法能够有效权衡开销与收益,精确实现资源的伸缩,应用该算法后,框架资源利用率提高40%以上,能够满足高速网络流处理的性能需求。

关键词: 网络流, 流处理, 自适应, 资源伸缩

Abstract:

In stream processing, static resource allocation is difficult to cope with real-time changes and sudden streaming data loads, so elasticity mechanisms need to be introduced. However, when determining the elastic scaling timing and scaling strategy, if the balance between the cost and benefit of scaling is not fully considered, frequent resource adjustments will be triggered, resulting in the system becoming unstable or less efficient instead. To solve this problem, this paper proposed a resource adaptive scaling algorithm, which determined the direction and scale of resource scaling by analyzing the scale of streaming data load and resource usage. At the same time, the algorithm proposed a maximum average processing throughput method, which took the processing throughput before and after the scaling operation as a quantitative index to evaluate the overhead and benefit brought by resource scaling, optimize the scaling strategy, and avoid unnecessary frequent adjustment of resources. Based on this algorithm, this paper designed a network flow elasticity processing framework, which realized the flexible expansion of the framework and the dynamic adjustment of resources. The framework is tested in different network bandwidth scenarios, and the experimental results show that the algorithm can effectively weigh the overhead and benefit, and accurately realize the resource scaling, and after applying the algorithm, the resource utilization of the framework is effectively increased more than 40%, which is able to satisfy the performance requirements of high-speed network stream processing.

Key words: network streaming, stream processing, adaptive, resource scaling

中图分类号: