信息网络安全 ›› 2024, Vol. 24 ›› Issue (7): 1050-1061.doi: 10.3969/j.issn.1671-1122.2024.07.007

• 理论研究 • 上一篇    下一篇

基于改进U-Net和混合注意力机制的高质量全尺寸图像隐写方法

董云云1, 朱玉玲2, 姚绍文2()   

  1. 1.云南大学信息学院,昆明 650504
    2.云南大学软件学院,昆明 650504
  • 收稿日期:2024-03-15 出版日期:2024-07-10 发布日期:2024-08-02
  • 通讯作者: 姚绍文 yaosw@ynu.edu.cn
  • 作者简介:董云云(1989—),女,云南,博士研究生,CCF会员,主要研究方向为大数据索引、分布式计算、图像隐写|朱玉玲(1999—),女,云南,硕士研究生,主要研究方向为图像隐写|姚绍文(1966—),男,云南,教授,博士,CCF会员,主要研究方向为网络空间安全、智能信息处理、业务流程建模、信息产业发展与人才培养。
  • 基金资助:
    云南省基础研究计划(202401AT070474)

High-Quality Full-Size Image Steganography Method Based on Improved U-Net and Hybrid Attention Mechanism

DONG Yunyun1, ZHU Yuling2, YAO Shaowen2()   

  1. 1. School of Information Science and Engineering, Yunnan University, Kunming 650504, China
    2. School of Software, Yunnan University, Kunming 650504, China
  • Received:2024-03-15 Online:2024-07-10 Published:2024-08-02

摘要:

图像隐写术是一种将秘密信息隐藏在图像中以防止被发现的技术。当前的图像隐写模型存在图像生成质量差和抗隐写分析能力弱等问题。混合注意力机制不仅可以抑制无意义的通道信息,避免其在含密图像上产生伪影,而且可以根据载体图像中不同位置的重要程度分配不同的权重,为秘密信息寻找更合适的隐藏区域。基于上述特点,文章提出了基于U-Net和混合注意力机制的高质量全尺寸图像隐写方法。文章所提方法的模型由编码器、提取器和判别器三个子网组成。编码器采用改进的U-Net结构和混合注意力机制模块进行设计;提取器采用卷积神经网络和混合注意力机制模块进行设计;判别器则用于增强模型的安全性。实验结果表明,该方法能够将尺寸为256×256的彩色秘密图像完全隐藏在同尺寸的彩色载体图像中,在不降低隐写容量的情况下实现高质量的图像隐写。该方法在ImageNet、COCO、DIV2K三个数据集上都展现了良好的视觉质量和隐藏容量,在ImageNet数据集上,PSNR值最高可达40.143 dB(载体图像与含密图像)和42.082 dB(秘密图像与重构的秘密图像),同时还能够提高模型的抗隐写分析能力。

关键词: 图像隐写, 混合注意力机制, U-Net

Abstract:

Image steganography is a technique for hiding secret information within images to prevent detection. Current image steganography models face issues, such as poor image generation quality and weak resistance to steganalysis. The hybrid attention mechanism can suppress meaningless channel information to avoid artifacts in the stego image and assign different weights based on the importance of different positions in the cover image, thereby finding more suitable hiding areas for the secret information. Based on these features, this paper proposed a high-quality, full-size image steganography method based on U-Net and hybrid attention mechanisms. The model comprised three subnetworks: an encoder, an extractor, and a discriminator. The encoder was designed using an improved U-Net structure and a hybrid attention mechanism module; the extractor was designed using convolutional neural networks and a hybrid attention mechanism module; the discriminator enhanced the model’s security. Experimental results show that this method can completely hide a 256×256 color secret image within a cover image of the same size, achieving high-quality image steganography without reducing the steganographic capacity. This method demonstrates good visual quality and hiding capacity on the ImageNet, COCO, and DIV2K datasets. On the ImageNet dataset, the PSNR values can reach up to 40.143 dB (cover image and stego image) and 42.082 dB (secret image and reconstructed secret image), while also improving the model’s resistance to steganalysis.

Key words: image steganography, hybrid attention mechanism, U-Net

中图分类号: