信息网络安全 ›› 2024, Vol. 24 ›› Issue (11): 1696-1709.doi: 10.3969/j.issn.1671-1122.2024.11.009

• 入选论文 • 上一篇    下一篇

基于事理图谱的受骗网络行为风险演进研究

周胜利1,2(), 徐睿1, 陈庭贵3, 蒋可怡2   

  1. 1.杭州电子科技大学网络空间安全学院,杭州 310018
    2.浙江警察学院计算机与信息安全系,杭州 310053
    3.浙江工商大学统计学院,杭州 310018
  • 收稿日期:2024-06-17 出版日期:2024-11-10 发布日期:2024-11-21
  • 通讯作者: 周胜利 76933768@qq.com
  • 作者简介:周胜利(1982—),男,浙江,副教授,博士,主要研究方向为网络安全、网络空间治理|徐睿(2000—),男,四川,硕士研究生,主要研究方向为网络安全、机器学习|陈庭贵(1979—),男,湖北,教授,博士,主要研究方向为网络舆情演化分析|蒋可怡(2002—),女,浙江,本科,主要研究方向为网络安全
  • 基金资助:
    国家社会科学基金(23BGL272)

Research on the Evolution of Defrauded Network Behavior Risk Based on Eventic Graph

ZHOU Shengli1,2(), XU Rui1, CHEN Tinggui3, JIANG Keyi2   

  1. 1. School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou 310018, China
    2. Department of Computer and Information Security, Zhejiang Police College, Hangzhou 310053, China
    3. School of Statistics, Zhejiang Gongshang University, Hangzhou 310018, China
  • Received:2024-06-17 Online:2024-11-10 Published:2024-11-21

摘要:

基于真实案件数据,从电信网络诈骗受害人的网络行为视角对受骗网络行为风险进行研究,能有效提升电信网络诈骗的防治能力。为此,文章首先利用LTP工具对相关数据进行处理。其次,通过模板匹配的方法从相关的语料数据中抽取受骗网络行为风险事件及事件之间的事理逻辑关系,并构建受骗网络行为风险的具体事理图谱。然后,文章构建了基于自编码器的深度聚类模型,对提取的风险事件进行泛化聚类,并根据泛化结果构建了受骗网络行为风险的抽象事理图谱。最后,基于所构建的具体和抽象事理图谱,利用案件流程分析模型与复杂网络分析技术,剖析受骗网络行为风险的构成与规律。文章将电信网络诈骗的受骗网络行为风险划分为接触风险、信任欺骗风险、心理漏洞利用风险和行为控制风险4个环节,并总结了各风险环节的时序、构成等规律。

关键词: 电信网络诈骗, 自然语言处理, 事理图谱, 演进分析

Abstract:

Based on real case data, this study investigated the risks of defrauded network behavior from the perspective of telecom network fraud victims' online activities, which can effectively enhance the prevention and control capabilities of telecom network fraud. To this end, the study first processed the relevant data using the LTP tool. Secondly, it extracted defrauded network behavior risk events and the eventic logical relationships between these events from the relevant corpus data through template matching methods, and constructed a specific eventic graph of defrauded network behavior risks. Then, the study built a deep clustering model based on an autoencoder to generalize and cluster the extracted risk events, and constructed an abstract eventic graph of defrauded network behavior risks based on the generalization results. Finally, using the constructed specific and abstract eventic graphs, the study analyzed the composition and patterns of defrauded network behavior risks through case process analysis models and complex network analysis techniques. The study ultimately categorized the defrauded network behavior risks of telecom network fraud into four stages: contact risk, trust deception risk, psychological vulnerability exploitation risk, and behavior control risk, and summarized the temporal sequences and compositions of each risk stage.

Key words: telecom network fraud, natural language processing, eventic graph, evolution analysis

中图分类号: