信息网络安全 ›› 2024, Vol. 24 ›› Issue (10): 1553-1561.doi: 10.3969/j.issn.1671-1122.2024.10.009

• 入选论文 • 上一篇    下一篇

联邦学习模型所有权保护方案综述

萨其瑞1, 尤玮婧2(), 张逸飞1, 邱伟杨2, 马存庆1   

  1. 1.中国科学院信息工程研究所,北京100085
    2.福建师范大学计算机与网络空间安全学院,福州 350108
  • 收稿日期:2024-06-08 出版日期:2024-10-10 发布日期:2024-09-27
  • 通讯作者: 尤玮婧, youweijing@fjnu.edu.cn
  • 作者简介:萨其瑞(2000—),女,内蒙古,硕士研究生,主要研究方向为数据安全|尤玮婧(1994—),女,福建,副教授,博士,CCF会员,主要研究方向为数据要素确权|张逸飞(1994—),男,陕西,助理研究员,博士,CCF会员,主要研究方向为数据安全|邱伟杨(2001—),男,福建,硕士研究生,主要研究方向为人工智能安全|马存庆(1984—),男,青海,高级工程师,博士,CCF会员,主要研究方向为网络与信息系统安全
  • 基金资助:
    国家自然科学基金(62202102)

A Survey of Ownership Protection Schemes for Federated Learning Models

SA Qirui1, YOU Weijing2(), ZHANG Yifei1, QIU Weiyang2, MA Cunqing1   

  1. 1. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100085, China
    2. College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350108, China
  • Received:2024-06-08 Online:2024-10-10 Published:2024-09-27

摘要:

近年来,机器学习逐渐成为推动各行业发展的一种关键技术。联邦学习通过融合本地数据训练和在线梯度迭代,实现了分布式安全多方机器学习中的模型泛化能力和数据隐私保护双提升。由于联邦学习模型需要投入大量的训练成本(包括算力、数据集等),因此,对凝结了巨大经济价值的联邦学习模型进行所有权保护显得尤为重要。文章调研了现存的针对联邦学习模型的所有权保护方案,通过对两种模型指纹方案、8种黑盒模型水印方案和5种白盒模型水印方案的梳理,分析联邦学习模型所有权保护的研究现状。此外,文章结合深度神经网络模型所有权保护方法,对联邦学习模型所有权保护的未来研究方向进行展望。

关键词: 机器学习, 联邦学习, 深度神经网络, 所有权保护

Abstract:

In recent years, machine learning has emerged as a key technology driving development across various industries. Federated learning has achieved enhancements in both model generalization and data privacy protection in distributed secure multi-party machine learning by integrating local data training with online gradient iteration. Due to the high training costs associated with federated learning models, including computational power and datasets, protecting the ownership of these economically valuable models has become particularly important. This article surveyed existing ownership protection schemes for federated learning models. The researchers examined two fingerprinting schemes, eight black-box watermarking schemes, and five white-box watermarking schemes to analyze the current state of research on model ownership protection. Additionally, this article combined methods for protecting the ownership of deep neural network models and provided insights into the current research directions for protecting the ownership of federated learning models.

Key words: machine learning, federated learning, deep neural networks, ownership protection

中图分类号: