信息网络安全 ›› 2023, Vol. 23 ›› Issue (7): 53-63.doi: 10.3969/j.issn.1671-1122.2023.07.006

• 技术研究 • 上一篇    下一篇

基于深度学习的HTTP负载隐蔽信道检测方法

苑文昕1,2, 陈兴蜀1,2(), 朱毅1,2, 曾雪梅2   

  1. 1.四川大学网络空间安全学院,成都 610065
    2.四川大学网络空间安全研究院,成都 610207
  • 收稿日期:2023-03-30 出版日期:2023-07-10 发布日期:2023-07-14
  • 通讯作者: 陈兴蜀 chenxsh@scu.edu.cn
  • 作者简介:苑文昕(1997—),男,陕西,硕士研究生,主要研究方向为网络威胁检测|陈兴蜀(1968—),女,四川,教授,博士,主要研究方向为云计算、数据安全体系、威胁检测、开源情报分析|朱毅(1991—),男,四川,博士研究生,主要研究方向为网络行为与威胁识别|曾雪梅(1976—),女,四川,工程师,博士,主要研究方向为网络流量识别、网络行为分析、IPv6网络安全
  • 基金资助:
    国家自然科学基金(U19A2081);中央高校基本科研业务费专项资金(SCU2021D048);四川大学工科特色团队项目(2020SCUNG129)

HTTP Payload Covert Channel Detection Method Based on Deep Learning

YUAN Wenxin1,2, CHEN Xingshu1,2(), ZHU Yi1,2, ZENG Xuemei2   

  1. 1. School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China
    2. Cyber Science Research Institute, Sichuan University, Chengdu 610207, China
  • Received:2023-03-30 Online:2023-07-10 Published:2023-07-14

摘要:

针对现有的网络流量统计特征和网络数据包负载特征无法有效检测HTTP负载隐蔽信道的问题,文章提出了一种基于会话流负载表示方式的卷积神经网络检测方法。首先,根据五元组和过期时间条件将HTTP通信产生的数据包聚合为双向会话流;然后,选择能反映通信交互行为和会话流结构的一组数据包,提取其传输层载荷原始字节序列,形成表示每一条HTTP会话流的会话流负载;最后,采用能够充分挖掘字节序列中时间与空间维度信息的2D-CNN构建检测模型。实验结果表明,提出的会话流负载表示方法相较于会话流数据包负载表示方法可以从更多的角度刻画HTTP通信,从而为检测任务提供更多有用信息。所提方法的检测准确率高达99%,效果优于基于网络流行为统计特征的传统机器学习检测方法。

关键词: HTTP, 隐蔽信道, 卷积神经网络, 检测任务

Abstract:

Aiming at the problem that existing network traffic statistical features and packet payload features cannot effectively detect HTTP payload covert channels, this article proposed a convolutional neural network detection method based on session flow payload representation. First, packets generated by HTTP communication were aggregated into bidirectional session flows based on five-tuple and expiration time conditions. Then, selected a set of packets that can reflect the communication interaction behavior and session flow structure, extract the original byte sequence of their transport layer payload, forming a session flow payload representing each HTTP session flow. Finally, the detection model was constructed using 2D-CNN that can fully mine temporal and spatial dimensional information in byte sequences. Experimental results show that the proposed session flow payload representation method can depict HTTP traffic from more perspectives than the session flow packet payload representation method, thereby providing more useful information for the detection task. The detection rate of the proposed method is as high as 99%, which is better than traditional machine learning detection methods based on network flow behavior statistical features.

Key words: HTTP, covert channel, convolutional neural network, detection task

中图分类号: