信息网络安全 ›› 2022, Vol. 22 ›› Issue (10): 69-75.doi: 10.3969/j.issn.1671-1122.2022.10.010

• 入选论文 • 上一篇    下一篇

基于时序交易图注意力神经网络的以太坊恶意账户检测

石拓1, 梁飞2(), 尚钢川2, 田洋俊3   

  1. 1.北京警察学院公安管理系,北京 102202
    2.北京市公安局海淀分局警务支援大队,北京 100089
    3.金寨县公安局,六安 237351
  • 收稿日期:2022-07-09 出版日期:2022-10-10 发布日期:2022-11-15
  • 通讯作者: 梁飞 E-mail:475662476@qq.com
  • 作者简介:石拓(1988—),女,北京,副教授,博士,主要研究方向为数据挖掘和人工智能|梁飞(1989—),男,北京,工程师,本科,主要研究方向为人工智能和区块链|尚钢川(1990—),男,北京,工程师,本科,主要研究方向为网络安全和人工智能|田洋俊(1988—),男,安徽,本科,主要研究方向为网络安全

Detection of Malicious Ethereum Account Based on Time Series Transaction and Graph Attention Neural Network

SHI Tuo1, LIANG Fei2(), SHANG Gangchuan2, TIAN Yangjun3   

  1. 1. Department of Public Security Management, Beijing Police College, Beijing 102202, China
    2. Haidian Branch Police Support Brigade of Beijing Public Security Bureau, Beijing 100089, China
    3. Public Security Bureau of Jinzhai County, Lu’an 237351, China
  • Received:2022-07-09 Online:2022-10-10 Published:2022-11-15
  • Contact: LIANG Fei E-mail:475662476@qq.com

摘要:

随着区块链的迅速发展,利用以太坊从事传销、诈骗、洗钱等犯罪行为逐年增加,因此对于以太坊账户的检测成为了破解新型犯罪的一种有效方法。文章提出将交易时间信息融入到以太坊地址账户特征的模型,从而检测以太坊账户是否为恶意账户。模型对传统的注意力网络进行改进,通过融合时序交易时间图注意力的神经网络实现了地址账户特征的最终表达。实验结果表明,该模型优于传统的机器学习分类算法和图神经网络分类算法。

关键词: 图注意力机制, 时间核函数, 以太坊地址

Abstract:

With the rapid development of blockchain, using ethereum to engage in pyramid selling, fraud, and money laundering crimes has increased year by year. Therefore, the detection of ethereum accounts has become an effective method to crack new types of crimes. The information was integrated into the characteristics of the ethereum address and account as a model to detect whether the account was a malicious one. The model in this paper improves the the neural network of graph attention mechanism and the time-series transaction information to realize the final expression of the address account characteristics. It is verified by experiments that the purposed model is superior to the graph neural network classification algorithm established by the traditional classification method.

Key words: graph attention mechanism, time kernel function, ethereum accounts

中图分类号: