信息网络安全 ›› 2021, Vol. 21 ›› Issue (12): 9-18.doi: 10.3969/j.issn.1671-1122.2021.12.002

• 入选论文 • 上一篇    下一篇

基于改进哈里斯鹰算法同步优化特征选择的恶意软件检测方法

徐国天(), 刘猛猛   

  1. 中国刑事警察学院公安信息技术与情报学院,沈阳 110854
  • 收稿日期:2021-09-26 出版日期:2021-12-10 发布日期:2022-01-11
  • 通讯作者: 徐国天 E-mail:xu_guo_tian888@163.com
  • 作者简介:徐国天(1978—),男,辽宁,教授,硕士,主要研究方向为网络安全及电子数据取证|刘猛猛(1997—),男,安徽,硕士研究生,主要研究方向为网络安全
  • 基金资助:
    公安部软科学计划项目(2020LLYJXJXY031);辽宁省自然科学基金(2019-ZD-0167);辽宁省自然科学基金(20180550841);辽宁省自然科学基金(2015020091);中央高校基本科研业务费(D2021006);中央高校基本科研业务费(3242017013);公安部技术研究计划课题(2016JSYJB06);辽宁网络安全执法协同创新中心资助项目(WXZX-201807010);辽宁省教育厅科学研究经费项目(LJKZ0072);研究生创新能力提升项目(2021YCYB44)

Malware Detection Method Based on Improved Harris Hawks Optimization Synchronization Optimization Feature Selection

XU Guotian(), LIU Mengmeng   

  1. College of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Shenyang 110854, China
  • Received:2021-09-26 Online:2021-12-10 Published:2022-01-11
  • Contact: XU Guotian E-mail:xu_guo_tian888@163.com

摘要:

针对恶意软件检测领域存在特征选择与模型参数调优难度大的问题,文章提出一种基于改进哈里斯鹰(Improved Harris Hawks Optimization,IHHO)算法同步优化特征选择的恶意软件检测方法。首先,将自适应精英反向学习策略、正余弦位置更新方式、circle混沌能量因子以及随机维度量子旋转门变异策略引入HHO算法,增强其全局探索和局部开发能力,提升算法收敛精度和稳定性。然后,采用IHHO同步优化极端梯度提升树分类算法参数及特征选择,构建基于网络流量特征的恶意软件检测模型。最后,使用改进算法对CICInvesAndMal2019数据集进行特征子集提取与模型参数寻优仿真实验。实验结果表明,IHHO算法能选取更高质量特征子集并提升恶意软件检测模型分类能力。

关键词: 哈里斯鹰优化算法, 恶意软件检测, 流量特征, 精英反向学习, 正余弦策略

Abstract:

Aiming at the difficulty of feature selection and model parameter tuning in malware detection field, a malware detection method based on improved Harris Hawks Optimization (HHO) synchronous optimization feature selection is proposed. The adaptive elite reverse learning strategy, circle chaos energy factor and random dimensional quantum revolving door mutation strategy are introduced into HHO algorithm to enhance its global exploration and local development ability and improve the convergence accuracy and stability of the algorithm. Extreme Gradient Boosting (XGBoost) is an improved Harris Hawks optimization (IHHO) algorithm for simultaneous optimization of classification parameters and feature selection, in order to build a malware detection model based on network traffic characteristics. Finally, the improved algorithm is used to extract feature subset and optimize model parameters of CICInvesAndMal2019 dataset. The results show that IHHO can select higher quality feature subset and improve the classification ability of malware detection model.

Key words: Harris Hawks optimization algorithm, malware detection, flow characteristics, elite opposition based learning, sines and cosines strategy

中图分类号: