信息网络安全 ›› 2020, Vol. 20 ›› Issue (7): 30-41.doi: 10.3969/j.issn.1671-1122.2020.07.004

• 技术研究 • 上一篇    下一篇

基于异常加密流量标注的Android恶意进程识别方法研究

徐国天()   

  1. 中国刑事警察学院网络犯罪侦查系,沈阳 110854
  • 收稿日期:2019-12-15 出版日期:2020-07-10 发布日期:2020-08-13
  • 通讯作者: 徐国天 E-mail:459536384@qq.com
  • 作者简介:徐国天(1978—),男,辽宁,副教授,硕士,主要研究方向为网络安全、电子物证
  • 基金资助:
    辽宁省自然科学基金(2019-ZD-0167);辽宁省自然科学基金(2015020091);辽宁省自然科学基金(20180550841);中央高校基本科研业务费(3242017013);公安部技术研究计划(2016JSYJB06)

Android Malicious Process Identification Method Based on Abnormal Encrypted Traffic Annotation

XU Guotian()   

  1. Cyber Crime Investigation Department, Criminal Investigation Police University of China, Shenyang 110854, China
  • Received:2019-12-15 Online:2020-07-10 Published:2020-08-13
  • Contact: Guotian XU E-mail:459536384@qq.com

摘要:

现有Android恶意样本分析方法需要提前获得待检的样本程序,当待检对象是Android智能终端而非一个样本程序时,因无法确定智能终端内哪个进程为待检恶意进程,导致样本分析法无法有效应用。现有针对恶意加密流量的检测方法可以达到较高的识别精度,但无法确定恶意流量与Android终端内恶意进程的映射关系,即无法确定恶意加密流量是由哪个进程产生的,也就不能锁定恶意进程具体位置信息。针对上述问题,文章提出一种基于异常加密流量标注的Android恶意进程识别方法,通过监听待检Android终端产生的网络通信数据,提取TLS加密通信流DNS特征、TLS握手协商特征和流统计特征,采用基于随机森林算法的二元分类器,识别恶意加密通信流;再通过提取流五元组特征值,在恶意加密通信流与Android终端进程之间建立一一映射关系,确定终端内恶意进程的具体位置。实验结果表明,该方法对复杂网络环境下未知恶意加密流量的检测精确度为97.46%,可根据检测出的恶意加密数据流定位Android终端内的恶意进程。

关键词: TLS协议, 加密流量标注, 五元组, 随机森林, 恶意进程识别

Abstract:

Existing Android malicious sample analysis methods need to obtain the sample program to be checked in advance. When the object to be checked is an android smart terminal instead of a sample program, it is impossible to determine which process in the smart terminal is the malicious process to be checked, which affects the effective application of the sample analysis method. Existing detection methods for malicious encrypted traffic can achieve high recognition accuracy, but it is impossible to determine the mapping relationship between malicious traffic and malicious processes in the android terminal, i.e. Which process generates malicious encrypted traffic cannot be determined, and further the specific location information of malicious processes cannot be locked. In order to solve the above problems, this paper proposes an android malicious process identification method based on anomalous encrypted traffic annotation. By monitoring the network communication data generated by android terminals, DNS characteristics, TLS handshake negotiation characteristics and flow statistical characteristics are extracted, and binary classifier based on random forest algorithm is adopted to identify malicious encrypted communication flow. Then, by extracting the characteristics of the flow 5-tuple, a one-to-one mapping is established between the malicious encrypted communication stream and the android terminal process to determine the specific location of the malicious process in the terminal. The experimental results show that the detection accuracy of the proposed method for unknown malicious encrypted traffic in complex network environment is 97.46%, and malicious processes in android terminals can be located according to the detected malicious encrypted data flow.

Key words: TLS protocol, encrypted traffic annotation, 5-tuple, random forest, malicious process identification

中图分类号: