[1] |
ZHUANG R, DELOACH S A, OU X. Towards A Theory of Moving Target Defense[C]// ACM. Proceedings of the First ACM Workshop on Moving Target Defense, November 3, 2014, Scottsdale, Arizona, USA. New York: ACM, 2014: 31-40.
|
[2] |
DAVID J, THOMAS C. Efficient DDoS Flood Attack Detection Using Dynamic Thresholding on Flow-based Network Traffic[J]. Computers & Security, 2019,82(7):284-295.
|
[3] |
SHAMSI Z, NANDWANI A, LEONARD D, et al. Hershel: Single-Packet OS Fingerprinting[J]. ACM SIGMETRICS Performance Evaluation Review, 2014,42(1):195-206.
|
[4] |
PRIGENT G, VICHOT F, HARROUET F. IpMorph: Fingerprinting Spoofing Unification[J]. Journal in Computer Virology, 2010,6(4):329-342.
|
[5] |
MA Junliang, WANG Xili, HE Juhou, et al. Research and Design of Enhanced Anti-Xprobe2[J]. Computer Engineering and Applications, 2012,48(32):1-4.
|
|
马君亮, 汪西莉, 何聚厚, 等. 增强型Anti-Xprobe2的研究与设计[J]. 计算机工程与应用, 2012,48(32):1-4.
|
[6] |
KAMPANAKIS P, PERROS H, BEYENE T. SDN-based Solutions for Moving Target Defense Network Protection[C]// IEEE. The Fifteenth International Symposium on a World of Wireless, Mobile and Multimedia Networks, Jun 16-19, 2014, Sydney, Australia. New York: IEEE, 2014: 1-6.
|
[7] |
JIA Zhaopeng. Research on Defense Oriented Network Spoofing Technology[D]. Beijing: Beijing University of Posts and Telecommunications, 2018.
|
|
贾召鹏. 面向防御的网络欺骗技术研究[D]. 北京:北京邮电大学, 2018.
|
[8] |
HAN W, ZHAO Z, DOUPÉ A, et al. Honeymix: Toward Sdn-based Intelligent Honeynet[C]// ACM. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization, March 9-11, 2016, New Orleans Louisiana USA. New York: ACM, 2016: 1-6.
|
[9] |
LA Q D, QUEK T Q S, LEE J, et al. Deceptive Attack and Defense Game in Honeypot-enabled Networks for the Internet of Things[J]. IEEE Internet of Things Journal, 2016,3(6):1025-1035.
|
[10] |
FAN W, DU Z, CREASEY M, et al. HoneyDOC: An Efficient Honeypot Architecture Enabling all-round Design[J]. IEEE Journal on Selected Areas in Communications, 2019,37(3):683-697.
|
[11] |
SHI L, LI Y, LIU T, et al. Dynamic Distributed Honeypot Based on Blockchain[EB/OL]. https://ieeexplore.ieee.org/document/8727529, 2019-11-15.
|
[12] |
JAFARIAN J H, NIAKANLAHIJI A, AL-SHAER E, et al. Multi-dimensional Host Identity Anonymization for Defeating Skilled Attackers[C]// ACM. Proceedings of the 2016 ACM Workshop on Moving Target Defense, October 24, 2018, Vienna, Austria. New York: ACM, 2016: 47-58.
|
[13] |
ZHUGE Jianwei, TANG Yong, HAN Xinhui, et al. Honeypot Technology Research and Application[J]. Journal of Software, 2013,24(4):825-842.
|
|
诸葛建伟, 唐勇, 韩心慧, 等. 蜜罐技术研究与应用进展[J]. 软件学报, 2013,24(4):825-842.
|
[14] |
LI Yan. Design and Implementation of Honeynet Active Defense System Based on SDN[D]. Beijing: Beijing University of Posts and Telecommunications, 2019
|
|
李俨. 基于SDN的蜜网主动防御系统设计与实现[D]. 北京:北京邮电大学, 2019.
|
[15] |
BONFIM M S, DIAS K L, FERNANDES S F L. Integrated NFV/SDN Architectures: A Systematic Literature Review[J]. ACM Computing Surveys (CSUR), 2019,51(6):1-39.
|
[16] |
HERWIG S, HARVEY K, HUGHEY G, et al. Measurement and Analysis of Hajime, A Peer-to-peer IoT Botnet[EB/OL]. http://www.cs.umd.edu/~smherwig/pub/18-imc/hajime-poster.pdf, 2019-10-15.
|
[17] |
CERON J M, STEDING J K, HOEPERS C, et al. Improving Iot Botnet Investigation Using An Adaptive Network Layer[J]. Sensors, 2019,19(3):727.
|
[18] |
PONGRÁCZ G, MOLNÁR L, KIS Z L. Removing Roadblocks from SDN: OpenFlow Software Switch Performance on Intel DPDK[C]// IEEE. 2013 Second European Workshop on Software Defined Networks, October 10-11, 2013, Berlin, Germany. New York: IEEE, 2013: 62-67.
|