信息网络安全 ›› 2025, Vol. 25 ›› Issue (12): 1927-1935.doi: 10.3969/j.issn.1671-1122.2025.12.008
收稿日期:2025-10-10
出版日期:2025-12-10
发布日期:2026-01-06
通讯作者:
付章杰
E-mail:fzj@nuist.edu.cn
作者简介:付章杰(1983—),男,河南,教授,博士,CCF会员,主要研究方向为人工智能安全、深度伪造取证和区块链安全|陈天宇 (2001—),男,江苏,硕士研究生,主要研究方向为信息隐藏|崔琦(1994—),男,辽宁,副教授,博士,主要研究方向为信息隐藏、深度学习模型安全
基金资助:
FU Zhangjie1,2,3(
), CHEN Tianyu1,2,3, CUI Qi1,2,3
Received:2025-10-10
Online:2025-12-10
Published:2026-01-06
Contact:
FU Zhangjie
E-mail:fzj@nuist.edu.cn
摘要:
动态手写签名作为一种重要的身份验证手段,通常通过比对签名模板与待验证签名,并依据阈值判断真伪。然而,随着深度学习在手写签名验证中的广泛应用,模型规模与训练成本显著增加,且模型作为服务提供时,面临被非法调用或滥用的风险。为确保签名验证模型仅被授权用户使用,文章提出一种基于对比学习的动态手写签名模型保护方法。该方法通过构建含正确密钥的签名与原始签名,以及含正确密钥与含随机密钥签名之间的对比损失,联合优化密钥嵌入和签名验证模型,利用对比学习让模型与含正确密钥签名关联的同时,区分出原始签名和含随机密钥签名,使模型仅对包含正确密钥的签名保持验证能力,从而有效防止未经授权的访问;同时,该机制可实现模型所有权确认与知识产权追踪。基于大型动态签名数据集DeepSignDB的实验结果表明,在拥有4张签名模板并包含熟练伪造样本的条件下,含正确密钥签名等错误率从原模型的2.65%上升为4.40%,原始签名和含随机密钥签名分别上升至16.98%与16.51%,实现了在显著增强模型安全性和可追溯性的同时,仍能保持原有的签名验证性能。
中图分类号:
付章杰, 陈天宇, 崔琦. 基于对比学习的动态手写签名验证模型保护方法[J]. 信息网络安全, 2025, 25(12): 1927-1935.
FU Zhangjie, CHEN Tianyu, CUI Qi. Dynamic Handwritten Signature Verification Models Protection Method Based on Contrastive Learning[J]. Netinfo Security, 2025, 25(12): 1927-1935.
表1
模板数量为1时的签名验证性能
| 数据集 | 模型 | 熟练伪造 | 随机伪造 | ||||
|---|---|---|---|---|---|---|---|
| 原始 | 正确 密钥 | 随机 密钥 | 原始 | 正确 密钥 | 随机 密钥 | ||
| MCYT | 未保护 | 4.06% | 4.22% | 3.99% | 0.55% | 0.51% | 0.49% |
| 保护 | 30.07% | 8.40% | 19.55% | 26.10% | 2.87% | 15.17% | |
| BiosecurID | 未保护 | 2.51% | 2.76% | 2.46% | 0.65% | 0.73% | 0.91% |
| 保护 | 30.02% | 6.51% | 36.52% | 28.46% | 3.29% | 31.45% | |
| Biosecure DS2 | 未保护 | 4.96% | 5.06% | 5.04% | 1.14% | 1.28% | 1.39% |
| 保护 | 32.55% | 11.56% | 27.76% | 30.79% | 5.69% | 21.97% | |
| e-BioSign DS2 | 未保护 | 4.35% | 4.76% | 4.58% | 2.14% | 2.31% | 2.05% |
| 保护 | 24.63% | 7.62% | 11.77% | 23.87% | 4.53% | 12.05% | |
| e-BioSign DS1 | 未保护 | 6.50% | 6.60% | 7.10% | 1.99% | 2.11% | 2.01% |
| 保护 | 27.62% | 10.86% | 12.42% | 23.84% | 4.41% | 7.24% | |
| DeepSignDB | 未保护 | 4.42% | 4.59% | 4.49% | 0.94% | 0.96% | 1.20% |
| 保护 | 31.18% | 9.52% | 24.34% | 28.04% | 4.11% | 20.45% | |
表2
模板数量为4时的签名验证性能
| 数据集 | 模型 | 熟练伪造 | 随机伪造 | ||||
|---|---|---|---|---|---|---|---|
| 原始 | 正确 密钥 | 随机 密钥 | 原始 | 正确 密钥 | 随机 密钥 | ||
| MCYT | 未保护 | 2.21% | 2.54% | 2.26% | 0.21% | 0.17% | 0.19% |
| 保护 | 16.97% | 3.26% | 10.36% | 12.52% | 0.68% | 6.17% | |
| BiosecurID | 未保护 | 1.26% | 1.19% | 1.19% | 0.41% | 0.31% | 0.50% |
| 保护 | 15.48% | 2.30% | 28.79% | 13.06% | 0.75% | 22.39% | |
| Biosecure DS2 | 未保护 | 3.51% | 4.05% | 3.45% | 1.35% | 1.57% | 1.66% |
| 保护 | 18.58% | 6.07% | 19.02% | 14.53% | 2.44% | 11.54% | |
| e-BioSign DS2 | 未保护 | 1.33% | 1.42% | 1.42% | 0.71% | 0.71% | 0.71% |
| 保护 | 13.19% | 3.57% | 8.09% | 11.48% | 2.14% | 5.71% | |
| e-BioSign DS1 | 未保护 | 3.21% | 3.77% | 3.49% | 1.55% | 1.49% | 1.58% |
| 保护 | 13.97% | 5.71% | 6.90% | 10.24% | 2.21% | 3.38% | |
| DeepSignDB | 未保护 | 2.65% | 2.99% | 2.69% | 0.74% | 0.77% | 0.86% |
| 保护 | 16.98% | 4.40% | 16.51% | 13.01% | 1.45% | 13.11% | |
表3
在DeepSignDB数据集上不同损失函数对签名验证性能的影响
| 模板 数量/张 | 模型 | 熟练伪造 | 随机伪造 | ||||
|---|---|---|---|---|---|---|---|
| 原始 | 正确 密钥 | 随机 密钥 | 原始 | 正确 密钥 | 随机 密钥 | ||
| 1 | 未保护 | 4.42% | 4.59% | 4.49% | 0.94% | 0.96% | 1.20% |
| 保护一 | 37.88% | 11.05% | 25.46% | 35.77% | 5.01% | 22.73% | |
| 保护二 | 31.18% | 9.52% | 24.34% | 28.04% | 4.11% | 20.45% | |
| 4 | 未保护 | 2.65% | 2.99% | 2.69% | 0.74% | 0.77% | 0.86% |
| 保护一 | 22.78% | 4.79% | 16.86% | 18.15% | 1.61% | 13.34% | |
| 保护二 | 16.98% | 4.40% | 16.51% | 13.01% | 1.45% | 13.11% | |
表5
在DeepSignDB数据集上不同模型保护方法对签名验证性能的影响
| 模板数量 /张 | 模型 | 熟练伪造 | 随机伪造 | ||||
|---|---|---|---|---|---|---|---|
| 原始 | 正确 密钥 | 随机 密钥 | 原始 | 正确 密钥 | 随机 密钥 | ||
| 1 | DeepIPR | 33.11% | 20.16% | 36.43% | 28.59% | 14.61% | 34.54% |
| SSAT | 41.20% | 17.35% | 35.71% | 36.85% | 10.05% | 33.53% | |
| 本文方法 | 31.18% | 9.52% | 24.34% | 28.04% | 4.11% | 20.45% | |
| 4 | DeepIPR | 18.78% | 9.55% | 29.66% | 14.21% | 6.07% | 24.77% |
| SSAT | 25.82% | 7.59% | 27.30% | 18.98% | 3.72% | 22.63% | |
| 本文方法 | 16.98% | 4.40% | 16.51% | 13.01% | 1.45% | 13.11% | |
| [1] | LAI Songxuan. Signature Verification and Writer Identification Based on Deep Learning and Domain Knowledge[D]. Guangzhou: South China University of Technology, 2021. |
| 赖松轩. 基于深度学习与领域知识的签名认证与笔迹识别[D]. 广州: 华南理工大学, 2021. | |
| [2] | QUAN Zhonghua. A Study of the Authentication Based on Online Signatures[D]. Hefei: University of Science and Technology of China, 2007. |
| 全中华. 基于动态手写签名的身份认证研究[D]. 合肥: 中国科学技术大学, 2007. | |
| [3] | DIAZ M, FISCHER A, PLAMONDON R, et al. Towards an Automatic On-Line Signature Verifier Using Only One Reference Per Signer[C]// IEEE. 2015 13th International Conference on Document Analysis and Recognition (ICDAR). New York: IEEE, 2015: 631-635. |
| [4] |
SAKOE H, CHIBA S. Dynamic Programming Algorithm Optimization for Spoken Word Recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49.
doi: 10.1109/TASSP.1978.1163055 URL |
| [5] | YAN Chendan, YANG Yang, CHENG Jiujun, et al. A DTW Signature Verification System Based on Statistical Modeling[J]. Netinfo Security, 2015, 15(7): 64-70. |
| 鄢晨丹, 杨阳, 程久军, 等. 基于统计模型的DTW签名认证系统[J]. 信息网络安全, 2015, 15(7):64-70. | |
| [6] |
SANTOSH K C, WENDLING L. Character Recognition Based on Non-Linear Multi-Projection Profiles Measure[J]. Frontiers of Computer Science, 2015, 9(5): 678-690.
doi: 10.1007/s11704-015-3400-2 |
| [7] |
LIU Yishu, YANG Zhihua, YANG Lihua. Online Signature Verification Based on DCT and Sparse Representation[J]. IEEE Transactions on Cybernetics, 2014, 45(11): 2498-2511.
doi: 10.1109/TCYB.2014.2375959 URL |
| [8] |
GALBALLY J, DIAZ-CABRERA M, FERRER M A, et al. On-Line Signature Recognition through the Combination of Real Dynamic Data and Synthetically Generated Static Data[J]. Pattern Recognition, 2015, 48(9): 2921-2934.
doi: 10.1016/j.patcog.2015.03.019 URL |
| [9] |
SHARMA A, SUNDARAM S. A Novel Online Signature Verification System Based on GMM Features in a DTW Framework[J]. IEEE Transactions on Information Forensics and Security, 2016, 12(3): 705-718.
doi: 10.1109/TIFS.2016.2632063 URL |
| [10] | DIAZ M, FERRER M A, IMPEDOVO D, et al. A Perspective Analysis of Handwritten Signature Technology[J]. ACM Computing Surveys (CSUR), 2019, 51(6): 1-39. |
| [11] |
LAI Songxuan, JIN Lianwen, ZHU Yecheng, et al. SynSig2Vec: Forgery-Free Learning of Dynamic Signature Representations by Sigma Lognormal-Based Synthesis and 1D CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 6472-6485.
doi: 10.1109/TPAMI.2021.3087619 URL |
| [12] |
JIANG Jiajia, LAI Songxuan, JIN Lianmen, et al. DsDTW: Local Representation Learning with Deep Soft-Dtw for Dynamic Signature Verification[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2198-2212.
doi: 10.1109/TIFS.2022.3180219 URL |
| [13] | HASHIM Z, AHMED H M, ALKHAYYAT A H. A Comparative Study among Handwritten Signature Verification Methods Using Machine Learning Techniques[EB/OL]. (2022-10-15)[2025-09-30]. https://onlinelibrary.wiley.com/doi/full/10.1155/2022/8170424. |
| [14] | ZHOU Weilin, LIAO Zhimin, LI Ke, et al. The Construction of the “Internet + Cloud Signature” Public Service Cloud Platform[J]. Network Security Technology and Application, 2023(4): 58-61. |
| 周蔚林, 廖智敏, 李科, 等. “互联网+云签”公共服务云平台的建设[J]. 网络安全技术与应用, 2023(4):58-61. | |
| [15] | JIN Biao, LIN Xiang, XIONG Jinbo, et al. Intellectual Property Protection of Deep Neural Network Models Based on Watermarking Technology[J]. Journal of Computer Research and Development, 2024, 61(10): 2587-2606. |
| 金彪, 林翔, 熊金波, 等. 基于水印技术的深度神经网络模型知识产权保护[J]. 计算机研究与发展, 2024, 61(10):2587-2606. | |
| [16] | NAMBA R, SAKUMA J. Robust Watermarking of Neural Network with Exponential Weighting[C]// ACM. The 2019 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2019: 228-240. |
| [17] |
ZHENG Yue, WANG Si, CHANG C H. A DNN Fingerprint for Non-Repudiable Model Ownership Identification and Piracy Detection[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2977-2989.
doi: 10.1109/TIFS.2022.3198267 URL |
| [18] |
DIAZ M, FERRER M A, ESKANDER G S, et al. Generation of Duplicated Off-Line Signature Images for Verification Systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(5): 951-964.
doi: 10.1109/TPAMI.2016.2560810 URL |
| [19] |
TOLOSANA R, VERA-RODRIGUEZ R, FIERREZ J, et al. DeepSign: Deep On-Line Signature Verification[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(2): 229-239.
doi: 10.1109/TBIOM.2021.3054533 URL |
| [20] | TOLOSANA R, VERA-RODRIGUEZ R, GONZALEZ-GARCIA C, et al. SVC-onGoing: Signature Verification Competition[EB/OL]. (2022-02-24)[2025-09-30]. https://www.sciencedirect.com/science/article/pii/S0031320322000905. |
| [21] |
SHEN Qi, LUAN Fangjun, YUAN Shuai. Multi-Scale Residual Based Siamese Neural Network for Writer-Independent Online Signature Verification[J]. Applied Intelligence, 2022, 52(12): 14571-14589.
doi: 10.1007/s10489-022-03318-5 |
| [22] | WU Xiaomeng, KIMURA A, KASHINO K, et al. Total Whitening for Online Signature Verification Based on Deep Representation[C]// IEEE. 2020 25th International Conference on Pattern Recognition (ICPR). New York: IEEE, 2021: 655-661. |
| [23] |
VORUGUNTI C S, PULABAIGARI V, GORTHI R K S S, et al. Osvfusenet: Online Signature Verification by Feature Fusion and Depth-Wise Separable Convolution Based Deep Learning[J]. Neurocomputing, 2020, 409: 157-172.
doi: 10.1016/j.neucom.2020.05.072 URL |
| [24] | FAN Xuefeng, ZHOU Xiaoyi, ZHU Bingbing, et al. Survey of Copyright Protection Schemes Based on DNN Model[J]. Journal of Computer Research and Development, 2022, 59(5): 953-977. |
| 樊雪峰, 周晓谊, 朱冰冰, 等. 深度神经网络模型版权保护方案综述[J]. 计算机研究与发展, 2022, 59(5)953-977. | |
| [25] | JIN Song, WANG Yuhang. On Protecting Neural Network Model in Memristor Platforms[J]. Chinese Journal of Computers, 2022, 45(11): 2377-2392. |
| 靳松, 汪宇航. 一种面向忆阻器平台的神经网络模型保护方法[J]. 计算机学报, 2022, 45(11):2377-2392. | |
| [26] | GUO Jingjing, LIU Jiuzun, MA Yong, et al. Backdoor Attack Defense Method for Federated Learning Based on Model Watermarking[J]. Chinese Journal of Computers, 2024, 47(3): 662-676. |
| 郭晶晶, 刘玖樽, 马勇, 等. 基于模型水印的联邦学习后门攻击防御方法[J]. 计算机学报, 2024, 47(3):662-676. | |
| [27] | PYONE A, MAUNG M, KIYA H. Training DNN Model with Secret Key for Model Protection[C]// IEEE. 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE). New York: IEEE, 2020: 818-821. |
| [28] | XU Chaohui, CUI Qi, DONG Jinxin, et al. IDEA: An Inverse Domain Expert Adaptation Based Active DNN IP Protection Method[EB/OL]. (2024-09-29)[2025-09-30]. https://arxiv.org/html/2410.00059v1. |
| [29] | LI Peihao, HUANG Jie, WU Huaqing, et al. SecureNet: Proactive Intellectual Property Protection and Model Security Defense for DNNs Based on Backdoor Learning[EB/OL]. (2024-03-07)[2025-09-30]. https://doi.org/10.1016/j.neunet.2024.106199. |
| [30] | LIU Ziyu, ZHOU Tong, LUO Yukui, et al. TBNet: A Neural Architectural Defense Framework Facilitating DNN Model Protection in Trusted Execution Environments[C]// ACM. The 61st ACM/IEEE Design Automation Conference. New York: ACM, 2024: 1-6. |
| [31] |
NIE Hewang, LU Songfeng, WU Junjun, et al. Deep Model Intellectual Property Protection with Compression-Resistant Model Watermarking[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(7): 3362-3373.
doi: 10.1109/TAI.2024.3351116 URL |
| [32] |
FAN Lixin, NG K W, CHAN C S, et al. DeepIPR: Deep Neural Network Ownership Verification with Passports[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 6122-6139.
doi: 10.1109/TPAMI.2021.3088846 URL |
| [33] | XUE Mingfu, WU Yinghao, ZHANG L Y, et al. SSAT: Active Authorization Control and User’s Fingerprint Tracking Framework for DNN IP Protection[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20(10): 1-24. |
| [34] | XIE Yingsha, MIN Rui, QIN Zeyu, et al. RoMa: A Robust Model Watermarking Scheme for Protecting IP in Diffusion Models[EB/OL]. (2025-07-01)[2025-09-30]. https://openreview.net/forum?id=TN1XsCahN7. |
| [35] | KONG Cong, XU Rui, CHEN Jiawei, et al. Protecting Copyright of Medical Pre-Trained Language Models: Training-Free Backdoor Model Watermarking[C]// ACM. The 33rd ACM International Conference on Multimedia. New York: ACM, 2025: 11590-11599. |
| [36] |
ORTEGA-GARCIA J, FIERREZ-AGUILAR J, SIMON D, et al. MCYT Baseline Corpus: A Bimodal Biometric Database[J]. IEE Proceedings-Vision, Image and Signal Processing, 2003, 150(6): 395-401.
doi: 10.1049/ip-vis:20031078 URL |
| [37] |
FIERREZ J, GALBALLY J, ORTEGA-GARCIA J, et al. BiosecurID: A Multimodal Biometric Database[J]. Pattern Analysis and Applications, 2010, 13(2): 235-246.
doi: 10.1007/s10044-009-0151-4 URL |
| [38] |
ORTEGA-GARCIA J, FIERREZ-AGUILAR J, ALONSO-FERNANDEZ F, et al. The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(6): 1097-1111.
doi: 10.1109/TPAMI.2009.76 URL |
| [39] | TOLOSANA R, VERA-RODRIGUEZ R, FIERREZ-AGUILAR J, et al. Benchmarking Desktop and Mobile Handwriting across COTS Devices: The E-BioSign Biometric Database[EB/OL]. (2017-05-05)[2025-09-30]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5419513/. |
| [1] | 王亚欣, 张健. 基于少样本命名实体识别技术的电子病历指纹特征提取[J]. 信息网络安全, 2024, 24(10): 1537-1543. |
| [2] | 刘高扬, 吴伟玲, 张锦升, 王琛. 多模态对比学习中的靶向投毒攻击[J]. 信息网络安全, 2023, 23(11): 69-83. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||