信息网络安全 ›› 2025, Vol. 25 ›› Issue (12): 1936-1947.doi: 10.3969/j.issn.1671-1122.2025.12.009

• 理论研究 • 上一篇    下一篇

基于改进Louvain算法的社区检测及核心节点发现研究

刘大禾1,2, 修佳鹏1,2(), 杨正球1,2   

  1. 1.北京邮电大学计算机学院,北京 100876
    2.北京邮电大学国家示范性软件学院,北京 100876
  • 收稿日期:2025-01-27 出版日期:2025-12-10 发布日期:2026-01-06
  • 通讯作者: 修佳鹏 E-mail:xiujiapeng@bupt.edu.cn
  • 作者简介:刘大禾(2000—),男,河南,硕士研究生,主要研究方向为大数据安全分析|修佳鹏(1977—),女,吉林,副教授,博士,主要研究方向为大数据安全分析、车联网安全|杨正球(1967—),男,江苏,教授,硕士,主要研究方向为大数据处理、网络信息安全
  • 基金资助:
    国家科技重大专项(2024ZD0803000)

Research on Community Detection and Core Node Discovery Based on Improved Louvain Algorithm

LIU Dahe1,2, XIU Jiapeng1,2(), YANG Zhengqiu1,2   

  1. 1. School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
    2. National Demonstration Software College, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2025-01-27 Online:2025-12-10 Published:2026-01-06
  • Contact: XIU Jiapeng E-mail:xiujiapeng@bupt.edu.cn

摘要:

在社区检测背景下,文章提出一种基于改进Louvain算法的社区检测方法,并通过构建综合评分模型结合多个中心性指标对社区中的核心节点进行了深入挖掘。改进后的算法通过合并冗余边和优化节点划分,显著提升了社区检测的精度和效率。在综合评分模型的权重选取上,文章引入粒子群算法以降低搜索复杂度,从而进一步提高了模型在核心节点识别中的性能。文章利用多个数据集网络验证了所提方法的有效性,实验结果显示,改进后的Louvain算法在复杂网络中具有更好的社区结构识别能力。同时,通过比较不同中心性指标的核心节点识别效果,发现综合评分模型结合粒子群优化算法在信息传播和节点重要性评估上具有明显优势。这一研究成果为社区检测和核心节点识别提供了有效的技术手段,并具备进一步扩展到更大规模网络的潜力。

关键词: 社区检测, 核心节点, Louvain, 粒子群

Abstract:

In the context of community detection, this paper proposed a community detection method based on the improved Louvain algorithm, and conducted in-depth mining of core nodes in the community by constructing a comprehensive scoring model combined with multiple centrality indicators. The improved algorithm significantly improved the accuracy and efficiency of community detection by merging redundant edges and optimizing node division. In the weight selection of the comprehensive scoring model, the particle swarm algorithm was introduced to reduce the search complexity, thereby further improving the model’s performance in core node identification. In the experiment, this paper used multiple data set networks to verify the effectiveness of this method. The results show that the improved Louvain algorithm has better community structure identification capabilities in complex networks. At the same time, by comparing the core node identification effects of different centrality indicators, it was found that the comprehensive scoring model combined with the particle swarm optimization algorithm has obvious advantages in information dissemination and node importance assessment. This research result provides an effective technical means for community detection and core node identification, and has the potential to be further expanded to larger-scale networks.

Key words: community detection, core node, Louvain, particle swarm

中图分类号: