信息网络安全 ›› 2024, Vol. 24 ›› Issue (2): 252-261.doi: 10.3969/j.issn.1671-1122.2024.02.008
收稿日期:
2023-12-14
出版日期:
2024-02-10
发布日期:
2024-03-06
通讯作者:
黄海燕
E-mail:huanghaiyan@mail.lzjtu.cn
作者简介:
黄海燕(1988—),女,甘肃,副教授,博士,主要研究方向为云网边端协同、新型多址接入技术、无人机通信和物理层安全|艾宇昕(1999—),女,山西,硕士研究生,主要研究方向为物理层安全|梁琳琳(1986—),男,河南,讲师,博士,主要研究方向为物理层安全|李赞(1975—),女,陕西,教授,博士,主要研究方向为电磁频谱认知
基金资助:
HUANG Haiyan1(), AI Yuxin1, LIANG Linlin2, LI Zan3
Received:
2023-12-14
Online:
2024-02-10
Published:
2024-03-06
Contact:
HUANG Haiyan
E-mail:huanghaiyan@mail.lzjtu.cn
摘要:
文章研究一个基于速率分拆多址接入(Rate Splitting Multiple Access,RSMA)技术的多输入单输出下行通信系统。RSMA通过将预期用户的信息进行解码,将其余用户的信息视为噪声来提供最佳性能。此外,RSMA中的公共信息不仅是用户的有用数据,也可以干扰外部窃听者。针对实际应用场景中用户离基站较远的情况,文章提出了存在窃听者的基于RSMA的中继协作传输方案。传输过程分为两个时隙:在第一时隙中,中继接收、解码并转发信号;在第二时隙中,用户接收来自中继的信号。每个用户首先解码公共消息;然后通过应用连续干扰消除(Successive Interference Cancellation,SIC)来解码其私有消息,基于此,推导在瑞利衰落信道下系统的中断概率和窃听者截获概率的闭合表达式;最后,通过蒙特卡洛仿真验证了理论分析的正确性。仿真结果表明,合理选择发射功率以及节点间距离能够有效降低系统的中断概率以及更好地权衡系统的安全性和可靠性。
中图分类号:
黄海燕, 艾宇昕, 梁琳琳, 李赞. 窃听者攻击下的RSMA无线通信系统中的物理层安全性能分析[J]. 信息网络安全, 2024, 24(2): 252-261.
HUANG Haiyan, AI Yuxin, LIANG Linlin, LI Zan. Analysis of Physical Layer Security Performance in RSMA Wireless Communication Systems under Eavesdropper Attacks[J]. Netinfo Security, 2024, 24(2): 252-261.
[1] |
SOUZANI A, POURMINA M A, AZMI P, et al. Physical Layer Security Enhancement via IRS Based on PD-NOMA and Cooperative Jamming[J]. IEEE Access, 2023, 11: 65956-65967.
doi: 10.1109/ACCESS.2023.3290104 URL |
[2] |
NGO Q T, PHAN K T, MAHMOOD A, et al. Physical Layer Security in IRS-Assisted Cache-Enabled Satellite Communication Networks[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 1920-1931.
doi: 10.1109/TGCN.2023.3280118 URL |
[3] | LIU Jue, CHENG Kaixin, YANG Weiwei. Research on Physical Layer Security Technologies for Smart Eavesdropper Attack[J]. Netinfo Security, 2023, 23(2): 45-53. |
刘珏, 程凯欣, 杨炜伟. 智能窃听攻击下的物理层安全技术研究[J]. 信息网络安全, 2023, 23(2):45-53. | |
[4] |
SHANNON C E. Communication Theory of Secrecy Systems[J]. Bell System Technical Journal, 1949, 28: 656-715.
doi: 10.1002/bltj.1949.28.issue-4 URL |
[5] |
WYNER A D. The Wire-Tap Channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387.
doi: 10.1002/bltj.1975.54.issue-8 URL |
[6] |
KHOSHAFA M H, NGATCHED T M N, AHMED M H. Relay Selection for Improving Physical Layer Security in D2D Underlay Communications[J]. IEEE Access, 2022, 10: 95539-95552.
doi: 10.1109/ACCESS.2022.3203698 URL |
[7] |
NGUYEN T N, TRAN D H, CHIEN T V, et al. Security-Reliability Tradeoff Analysis for SWIPT- and AF-Based IoT Networks With Friendly Jammers[J]. IEEE Internet of Things Journal, 2022, 9(21): 21662-21675.
doi: 10.1109/JIOT.2022.3182755 URL |
[8] |
VO D T, CHIEN T V, NGUYEN T N, et al. SWIPT-Enabled Cooperative Wireless IoT Networks with Friendly Jammer and Eavesdropper: Outage and Intercept Probability Analysis[J]. IEEE Access, 2023, 11: 86165-86177.
doi: 10.1109/ACCESS.2023.3303369 URL |
[9] |
KHISA S, ALMEKHLAFI M, ELHATTAB M, et al. Full Duplex Cooperative Rate Splitting Multiple Access for a MISO Broadcast Channel with Two Users[J]. IEEE Communications Letters, 2022, 26(8): 1913-1917.
doi: 10.1109/LCOMM.2022.3173894 URL |
[10] |
LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-Layer Authentication for Ambient Backscatter Aided NOMA Symbiotic Systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288-2303.
doi: 10.1109/TCOMM.2023.3245659 URL |
[11] |
HUANG Jingfei, YANG Yang, YIN Longfei, et al. Deep Reinforcement Learning-Based Power Allocation for Rate-Splitting Multiple Access in 6G LEO Satellite Communication System[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2185-2189.
doi: 10.1109/LWC.2022.3196408 URL |
[12] |
PAPADOPOULOS A, CHATZIDIAMANTIS N D, GEORGIADIS L. Network Coding Techniques for Primary-Secondary User Cooperation in Cognitive Radio Networks[J]. IEEE Transactions Wireless Communications, 2020, 19(6): 4195-4208.
doi: 10.1109/TWC.7693 URL |
[13] |
MAO Yijie, PIOVANO E, CLERCKX B. Rate-Splitting Multiple Access for Overloaded Cellular Internet of Things[J]. IEEE Transactions on Communications, 2021, 69(7): 4504-4519.
doi: 10.1109/TCOMM.2021.3067642 URL |
[14] |
WANG Wenjie, LI Lihua, DENG Gang, et al. A Joint Multiservice Transmission Scheme for RSMA-Aided Cell-Free mMIMO System[J]. IEEE Communications Letters, 2023, 27(2): 591-594.
doi: 10.1109/LCOMM.2022.3174111 URL |
[15] |
LI Hongyu, MAO Yijie, DIZDAR O, et al. Rate-Splitting Multiple Access for 6G-Part III: Interplay with Reconfigurable Intelligent Surfaces[J]. IEEE Communications Letters, 2022, 26(10): 2242-2246.
doi: 10.1109/LCOMM.2022.3192041 URL |
[16] |
PARK S, CHOI J, PARK J, et al. Rate-Splitting Multiple Access for Quantized Multiuser MIMO Communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7696-7711.
doi: 10.1109/TWC.2023.3254538 URL |
[17] |
TEGOS S A, DIAMANTOULAKIS P D, KARAGIANNIDIS G K. On the Performance of Uplink Rate-Splitting Multiple Access[J]. IEEE Communications Letters, 2022, 26(3): 523-527.
doi: 10.1109/LCOMM.2022.3142102 URL |
[18] |
YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Optimization of Rate Allocation and Power Control for Rate Splitting Multiple Access (RSMA)[J]. IEEE Transactions on Communications, 2021, 69(9): 5988-6002.
doi: 10.1109/TCOMM.2021.3091133 URL |
[19] | SHAMBHARKAR D, DHOK S, SHARMA P K. Performance Analysis of RIS Assisted RSMA Communication System[C]// IEEE. 2022 National Conference on Communications (NCC). New York:IEEE, 2022: 227-232. |
[20] |
SHAMBHARKAR D, DHOK S, SINGH A, et al. Rate-Splitting Multiple Access for RIS-Aided Cell-Edge Users with Discrete Phase-Shifts[J]. IEEE Communications Letters, 2022, 26(11): 2581-2585.
doi: 10.1109/LCOMM.2022.3195199 URL |
[21] | CAN M, ALTUNBAS I. Outage Probability Analysis of Rate-Splitting Multiple-Access-Based Hybrid Satellite-Terrestrial Relay Network With Relay Selection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6508-6517. |
[22] | PANG Haoran, JI Fei, NING Zhaolong, et al. Enhancing Security in RSMA Networks with Cooperative Jamming and Relaying[C]// IEEE. 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). New York:IEEE, 2023: 176-180. |
[23] |
GAO Ying, WU Qingqing, CHEN Wen, et al. Rate-Splitting Multiple Access for Intelligent Reflecting Surface-Aided Secure Transmission[J]. IEEE Communications Letters, 2023, 27(2): 482-486.
doi: 10.1109/LCOMM.2022.3224499 URL |
[24] |
XIA Huiyun, HAN Shuai, LI Cheng. Max-Min Fair Optimization in RSMA-Assisted Secure Communications with Artificial Noise[J]. IEEE Communications Letters, 2023, 27(12): 3181-3184.
doi: 10.1109/LCOMM.2023.3328782 URL |
[1] | 刘珏, 程凯欣, 杨炜伟. 智能窃听攻击下的物理层安全技术研究[J]. 信息网络安全, 2023, 23(2): 45-53. |
[2] | 赵洪, 李姗, 左珮良, 魏占祯. 基于强化学习的物联网安全资源分配方法[J]. 信息网络安全, 2022, 22(6): 44-52. |
[3] | 丁举鹏, 易芝玲, 王劲涛, 阳辉. 可见光通信物理链路的基准保密容量比较研究[J]. 信息网络安全, 2020, 20(5): 65-71. |
[4] | 胡蝶, 马东堂, 龚旻, 马召. 一种基于PUF的物理层安全认证方法[J]. 信息网络安全, 2020, 20(1): 61-66. |
[5] | 张涛, 刘樵, 李晖. 多天线系统中物理层安全问题研究综述[J]. 信息网络安全, 2016, 16(5): 9-14. |
[6] | 杨斌. 无线通信物理层安全技术研究[J]. , 2012, 12(6): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||