Netinfo Security ›› 2025, Vol. 25 ›› Issue (12): 1936-1947.doi: 10.3969/j.issn.1671-1122.2025.12.009
Previous Articles Next Articles
LIU Dahe1,2, XIU Jiapeng1,2(
), YANG Zhengqiu1,2
Received:2025-01-27
Online:2025-12-10
Published:2026-01-06
Contact:
XIU Jiapeng
E-mail:xiujiapeng@bupt.edu.cn
CLC Number:
LIU Dahe, XIU Jiapeng, YANG Zhengqiu. Research on Community Detection and Core Node Discovery Based on Improved Louvain Algorithm[J]. Netinfo Security, 2025, 25(12): 1936-1947.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.12.009
| 数据集 | GN | LV | DFL | KM | CL | IL |
|---|---|---|---|---|---|---|
| Karate | 0.3520 | 0.4345 | 0.4435 | 0.3898 | 0.4632 | 0.4673 |
| Dolphins | 0.5059 | 0.5188 | 0.5383 | 0.4772 | 0.5123 | 0.5197 |
| Polbooks | 0.5073 | 0.5267 | 0.5211 | 0.5046 | 0.5269 | 0.5252 |
| Football | 0.5394 | 0.6044 | 0.6039 | 0.5552 | 0.6099 | 0.6112 |
| 0.4328 | 0.5327 | 0.5201 | 0.4698 | 0.5567 | 0.6011 | |
| 0.7829 | 0.8349 | 0.8451 | 0.8138 | 0.8328 | 0.8531 | |
| 0.7923 | 0.8068 | 0.8101 | 0.8011 | 0.8145 | 0.8201 |
| 数据集 | 节点数 /个 | 原始边数/条 | 合并后 边数/条 | 边减少比 | LV 时间 /s | IL时间 /s |
|---|---|---|---|---|---|---|
| Karate | 34 | 78 | 50 | 35.89% | 0.0123 | 0.0095 |
| Dolphins | 62 | 159 | 98 | 38.49% | 0.0241 | 0.0178 |
| Polbooks | 105 | 441 | 301 | 31.75% | 0.0453 | 0.0367 |
| Football | 115 | 613 | 412 | 32.87% | 0.0512 | 0.0431 |
| 1133 | 5351 | 17436 | 31.76% | 0.7851 | 0.6157 | |
| 4039 | 88234 | 60123 | 31.83% | 2.9453 | 2.0148 | |
| 81306 | 1768149 | 1205720 | 31.81% | 315.2345 | 208.4356 |
| 数据集 | 节点 | TR | BC | K-shell | PR | TPN |
|---|---|---|---|---|---|---|
| Karate | Top-1 | 0.0808 | 0.0825 | 0.0814 | 0.0924 | 0.0803 |
| Top-3 | 0.0742 | 0.0738 | 0.0731 | 0.0731 | 0.0731 | |
| Top-5 | 0.0689 | 0.0672 | 0.0672 | 0.0675 | 0.0675 | |
| Dolphins | Top-1 | 0.0933 | 0.0936 | 0.0932 | 0.0931 | 0.0928 |
| Top-3 | 0.0929 | 0.0927 | 0.0918 | 0.0923 | 0.0916 | |
| Top-5 | 0.0911 | 0.0907 | 0.0902 | 0.0910 | 0.0899 | |
| Polbooks | Top-1 | 0.0497 | 0.0478 | 0.0451 | 0.0448 | 0.0440 |
| Top-3 | 0.0484 | 0.0453 | 0.0426 | 0.0435 | 0.0433 | |
| Top-5 | 0.0471 | 0.0424 | 0.0415 | 0.0421 | 0.0410 |
| [1] |
CHRISTENSEN A P, GARRIDO L E, GUERRA-PENA K, et al. Comparing Community Detection Algorithms in Psychometric Networks: A Monte Carlo Simulation[J]. Behavior Research Methods, 2023, 56(3): 1485-1505.
doi: 10.3758/s13428-023-02106-4 pmid: 37326769 |
| [2] | YANG Yu, LONG Yong, GUI Linbin, et al. Based on Spectral Clustering Dynamic Community Discovery Algorithm Research in Temporal Network[C]// IEEE. 2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA). New York: IEEE, 2023: 132-136. |
| [3] | WANG Hongwei, LESKOVEC J. Unifying Graph Convolutional Neural Networks and Label Propagation[EB/OL]. (2020-02-17)[2024-12-08]. http://arxiv.org/abs/2002.06755. |
| [4] | KANKHAM S, HOU Jianren. Community Notes vs. Related Articles: Assessing Real-World Integrated Counter-Rumor Features in Response to Different Rumor Types on Social Media[J]. International Journal of Human-Computer Interaction, 2024: 103-110. |
| [5] | CHEN Zhiyuan, HOU Bingxu, YANG Xuan, et al. Industry Community and Core Industry Detection Based on Electricity Consumption Data[C]// IEEE. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). New York: IEEE, 2021: 3031-3035. |
| [6] | LI Shiling, LUO Jie, XU Jiaming. Study on Regional Traffic Sub-Area Division Based on Improved Louvain Algorithm and Correlation Degree[C]// IEEE. 2022 China Automation Congress (CAC). New York: IEEE, 2022: 3522-3527. |
| [7] | XIAO Bo, XU Chenyue, LI Shengguang, et al. A Weakly Supervised Abnormal Behavior Detection Method with Multi-Scale Features[J]. Journal of Chinese Computer Systems, 2024, 45(10): 1474-1481. |
| 肖波, 许辰月, 李胜广, 等. 融合多尺度特征的弱监督异常行为检测方法[J]. 小型微型计算机系统, 2025, 45 (10): 1474-1481. | |
| [8] | NADIA L, DOUNIA L, AHMED D E M. Enhancing Vaccination Strategy Effectiveness in Epidemic Networks: Exploring a New Centrality Measure and Community Detection Methods[C]// IEEE. 2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM). New York: IEEE, 2023: 1-6. |
| [9] | RAHU L, SRIVASTAVA S, KUMAR P. Comparative Study of Clustering Approaches in Rumor Source Localization Algorithm in Social Networks[C]// IEEE. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). New York: IEEE, 2020: 835-843. |
| [10] | DEVI K, TRIPATHI R. Information Diffusion within a Limited Budget Using Node Centralities and Community Detection[C]// IEEE. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). New York: IEEE, 2020: 197-202. |
| [11] | MADHULIK A, SABHARWAL S, KAUR P. Identification of Efficient Central Nodes Using Centrality Measures within Community Structures[C]// IEEE. 2024 2nd International Conference on Disruptive Technologies (ICDT). New York: IEEE, 2024: 1062-1067. |
| [12] | JIN Di, YU Zhizhi, JIAO Pengfei, et al. A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 1149-1170. |
| [13] |
WANG Jingwei, LIU Chuan, ZHAO Yukai, et al. Graph Convolutional Network Aided Inverse Graph Partitioning for Resource Allocation[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3082-3091.
doi: 10.1109/TII.2023.3302328 URL |
| [14] | PARK M, FENG D W, DIGRA S, et al. Improved Community Detection Using Stochastic Block Models[EB/OL]. (2024-08-20)[2024-12-08]. http://arxiv.org/abs/2408.10464. |
| [15] |
JIA Hongjie, DING Shifei, XU Xinzheng, et al. The Latest Research Progress on Spectral Clustering[J]. Neural Computing and Applications, 2014, 24(7): 1477-1486.
doi: 10.1007/s00521-013-1439-2 URL |
| [16] |
LU Xiaoyan, CROSS B, SZYMANSKI B K. Asymptotic Resolution Bounds of Generalized Modularity and Multi-Scale Community Detection[J]. Information Sciences, 2020, 525: 54-66.
doi: 10.1016/j.ins.2020.03.082 URL |
| [17] | BHATTACHARJEE P, MITRA P. A Survey of Density Based Clustering Algorithms[J]. Frontiers of Computer Science, 2021, 15(1): 704-723. |
| [18] |
QU Song, DU Yuqing, ZHU Mu, et al. Dynamic Community Detection Based on Evolutionary DeepWalk[J]. Applied Sciences, 2022, 12(22): 11464-11475.
doi: 10.3390/app122211464 URL |
| [19] | CAI Zihao, GU Zhaodong, HE Kejing. A Self-Adaptive Density-Based Clustering Algorithm for Varying Densities Datasets with Strong Disturbance Factor[J]. Data & Knowledge Engineering, 2024, 153: 1023-1045. |
| [20] |
SU Xing, XUE Shan, LIU Fanzhen, et al. A Comprehensive Survey on Community Detection with Deep Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4682-4702.
doi: 10.1109/TNNLS.2021.3137396 URL |
| [21] |
JI Xiaopeng, LI Yan, WEN Peng. Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1464-1472.
doi: 10.1109/TNSRE.2022.3176004 URL |
| [22] | FU Xinyu, ZHANG Jiani, MENG Ziqiao, et al. MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding[C]// ACM. The Web Conference 2020. New York: ACM, 2020: 2331-2341. |
| [23] |
WANG Jia, CAO Jiannong, LI Wei, et al. CANE: Community-Aware Network Embedding via Adversarial Training[J]. Knowledge and Information Systems, 2021, 63(2): 411-438.
doi: 10.1007/s10115-020-01521-9 |
| [24] |
SALHA-GALVAN G, LUTZEYER J F, DASOULAS G, et al. Modularity-Aware Graph Autoencoders for Joint Community Detection and Link Prediction[J]. Neural Networks, 2022, 153: 474-495.
doi: 10.1016/j.neunet.2022.06.021 URL |
| [25] | FANG Hao, WANG Qu, HU Qicong, et al. MNTD: An Efficient Dynamic Community Detector Based on Nonnegative Tensor Decomposition[EB/OL]. (2024-07-26)[2024-12-08]. http://arxiv.org/abs/2407.18849. |
| [26] | SAHU S, KOTHAPALLI K, BANERJEE D S. Shared-Memory Parallel Dynamic Louvain Algorithm for Community Detection[C]// IEEE. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). New York: IEEE, 2024: 1204-1205. |
| [27] | GHOSH S, HALAPPANAVAR M, TUMEO A, et al. Distributed Louvain Algorithm for Graph Community Detection[C]// IEEE. 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). New York: IEEE, 2018: 885-895. |
| [28] | ABBAS E A, NAWAF H N. Improving Louvain Algorithm by Leveraging Cliques for Community Detection[C]// IEEE. 2020 International Conference on Computer Science and Software Engineering (CSASE). New York: IEEE, 2020: 244-248. |
| [29] | KUMAR R, GURUGUBELLI S, CHEPURI S P. Identifying Core-Periphery Structures Using Graph Neural Networks[C]// IEEE. 2022 56th Asilomar Conference on Signals, Systems, and Computers. New York: IEEE, 2022: 251-255. |
| [30] | ZHANG Xiaolong, LUO Wenhua. Implementing Federated Learning Intrusion Detection Using Dynamic Clipping Differential Privacy[J]. Journal of Chinese Computer Systems, 2024, 45(6): 1474-1481. |
| 张晓龙, 罗文华. 利用动态裁剪差分隐私实现联邦学习入侵检测[J]. 小型微型计算机系统, 2024, 45(6): 1474-1481. | |
| [31] | LIANG Zhichao, TONG Boan, LIU Hui, et al. Finding Key Nodes on Terrorist Networks through K-Shell Based on Structural Hole[C]// IEEE. 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). New York: IEEE, 2021: 33-37. |
| [32] | AMSHI A T, SHUJian, LIULinlan. Most Powerful Node Identification in Complex Network Using a Multiperspective Approach[C]// IEEE. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). New York: IEEE, 2019: 1461-1468. |
| [33] |
WAN Liangtian, ZHANG Mingyue, LI Xiaona, et al. Identification of Important Nodes in Multilayer Heterogeneous Networks Incorporating Multirelational Information[J]. IEEE Transactions on Computational Social Systems, 2022, 9(6): 1715-1724.
doi: 10.1109/TCSS.2022.3161305 URL |
| [34] | LI Yiwei, LI Wei. Key Node Recognition Algorithm Based on Improved K-Shell Entropy[C]// IEEE. 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). New York: IEEE, 2024: 916-920. |
| [35] | MEGHANATHAN N. Canonical Correlation Analysis of Neighborhood-Based Centrality Metrics vs. Shortest Path-Based Centrality Metrics[C]// IEEE. 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). New York: IEEE, 2023: 1433-1438. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||