[1] |
LENG Tao, CAI Lijun, YU Aimin, et al. Review of Threat Discovery and Forensic Analysis Based on System Provenance Graph[J]. Journal on Communications, 2022. 43(7): 172-188.
doi: 10.11959/j.issn.1000-436x.2022105
|
|
冷涛, 蔡利君, 于爱民, 等. 基于系统溯源图的威胁发现与取证分析综述[J]. 通信学报, 2022, 43(7): 172-188.
doi: 10.11959/j.issn.1000-436x.2022105
|
[2] |
ZIPPERLE M, GOTTWALT F, CHANG E, et al. Provenance-Based Intrusion Detection Systems: A Survey[J]. ACM Computing Surveys, 2022, 55(7): 1-36.
|
[3] |
MANZOOR E, MILAJERDI S M, AKOGLU L. Fast Memory-Efficient Anomaly Detection in Streaming Heterogeneous Gphs[C]// ACM. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1035-1044.
|
[4] |
HAN Xueyuan, PASQUIER T, BATES A, et al. UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats[EB/OL]. (2020-01-14)[2023-04-20]. https://doi.org/10.48550/arXiv.2001.01525.
doi: https://doi.org/10.48550/arXiv.2001.01525
|
[5] |
WANG Qi, HASSAN W U, LI Ding, et al. You are What You Do: Hunting Stealthy Malware via Data Provenance Analysis[EB/OL]. (2020-01-01)[2023—04-20]. https://www.ndss-symposium.org/wp-content/uploads/2020/02/24167-paper.pdf.
|
[6] |
HAN Xueyuan, YU Xiao, PASQUIER T, et al. SIGL: Securing Software Installations Through Deep Graph Learning[EB/OL]. (2021-06-22)[2023-04-20]. https://doi.org/10.48550/arXiv.2008.11533.
doi: https://doi.org/10.48550/arXiv.2008.11533
|
[7] |
XIE Yulai, FENG Dan, HU Yuchong, et al. Pagoda: A Hybrid Approach to Enable Efficient Real-Time Provenance Based Intrusion Eetection in Big Data Environments[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 17(6): 1283-1296.
doi: 10.1109/TDSC.8858
URL
|
[8] |
MILAJERDI S M, GJOMEMO R, ESHETE B, et al. HOLMES: Real-Time APT Detection Through Correlation of Suspicious Information Flows[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York:IEEE, 2019: 1137-1152.
|
[9] |
HOSSAIN M N, MILAJERDI S M, WANG Junao, et al. SLEUTH: Real-Time Attack Scenario Reconstruction from COTS Audit Data[C]// USENIX Association. 26th USENIX Security Symposium (USENIX Security 17). New York:Red Hook, 2017: 487-504.
|
[10] |
SUN Xiaoyan, DAI Jun, LIU Peng, et al. Using Bayesian Networks for Probabilistic Identification of Zero-Day Attack Paths[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(10): 2506-2521.
doi: 10.1109/TIFS.2018.2821095
URL
|
[11] |
HASSAN W U, BATES A, MARINO D. Tactical Provenance Analysis for Endpoint Detection and Response Systems[C]// IEEE. 2020 IEEE Symposium on Security and Privacy (SP). New York:IEEE, 2020: 1172-1189.
|
[12] |
ALSAHEEL A, NAN Yuhong, MA Shiqing, et al. ATLAS: A Sequence-Based Learning Approach for Attack Investigation[C]// USENIX Association. Proceedings of the 30th USENIX Security Symposium. New York: Red Hook, 2021: 3005-3022.
|
[13] |
GOYAL A, HAN Xueyuan, WANG Gang, et al. Sometimes, You Aren’t What You Do: Mimicry Attacks Against Provenance Graph Host Intrusion Detection Systems[EB/OL]. (2023-03-03)[2023-04-20]. https://dx.doi.org/10.14722/ndss.2023.24207.
doi: https://dx.doi.org/10.14722/ndss.2023.24207
|
[14] |
GAO Peng, SHAO Fei, LIU Xiaoyuan, et al. Enabling Efficient Cyber Threat Hunting with Cyber Threat Intelligence[C]// IEEE. 2021 IEEE 37th International Conference on Data Engineering (ICDE). New York:IEEE, 2021: 193-204.
|
[15] |
SATVAT K, GJOMEMO R, VENKATAKRISHNAN V N. EXTRACTOR: Extracting Attack Behavior from Threat Reports[C]// IEEE. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). New York:IEEE, 2021: 598-615.
|
[16] |
ZHANG Huixia, SHEN Guowei, GUO Chun, et al. EX-Action: Automatically Extracting Threat Actions from Cyber Threat Intelligence Report Based on Multimodal Learning[J]. Security and Communication Networks, 2021, 1: 1-12.
doi: 10.1002/(ISSN)1939-0122
URL
|
[17] |
MILAJERDI S M, ESHETE B, GJOMEMO R, et al. Poirot: Aligning Attack BehAvior with Kernel Audit Records for Cyber Treat Hunting[C]// ACM. Proceedings of the 2019 ACM SIGSAC Conference on Co-mputer and Communications Security. New York: ACM, 2019: 1795-1812.
|
[18] |
WEI Renzheng, CAI Lijun, ZHAO Lixin, et al. Deephunter: A Graph Neural Network Based Approach for Robust Cyber Threat Hunting[C]// Springer. International Conference on Security and Privacy in Communication Systems. Berlin:Springer, 2021: 3-24.
|
[19] |
LIU Chen, LI Bo, ZHAO Jun, et al. MG-DVD: A Real-Time Framework for Malware Variant Detection Based on Dynamic Heterogeneous Graph Larning[EB/OL]. (2021-06-24)[2023-04-20]. https://doi.org/10.48550/arXiv.2106.12288.
doi: https://doi.org/10.48550/arXiv.2106.12288
|
[20] |
REIMERS N, GUREVYCH I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks[C]// ACL. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg:ACL, 2019: 3982-3992.
|
[21] |
STRNAD A, MESSITER Q, WATSON R, et al. Casual, Adaptive, Distributed, and Efficient Tracing System (cadets)[R]. BAE Systems, 2019.
|
[22] |
BAI Yunsheng, DING Hao, BIAN Song, et al. Simgnn: A Neural Network Approach to Fast Graph Ssimilarity Computation[C]// ACM. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 384-392.
|
[23] |
LING Xiang, WU Lingfei, WANG Saizhuo, et al. Multilevel Graph Matching Networks for Deep Graph Similarity Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2), 799-813.
doi: 10.1109/TNNLS.2021.3102234
URL
|
[24] |
QURESHI R J, RAMEL J Y, CARDOT H. Graph Based Shapes Representation and Recognition[C]// Springer. Graph-Based Representations in Pattern Recognition:6th IAPR-TC-15 International Workshop. Berlin:Springer, 2007: 49-60.
|