[1] |
MAO Jian, ZHAO Hongdong, YAO Jingjing. Application and Prospect of Artificial Neural Network[J]. Electronic Design Engineering. 2011,19(24):62-65.
|
|
毛健, 赵红东, 姚婧婧. 人工神经网络的发展及应用[J]. 电子设计工程, 2011,19(24):62-65.
|
[2] |
LIU Yingqi. Trojaning Attack on Neural Networks[EB/OL]. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2782&context=cstech, 2018-06-12.
|
[3] |
GU Tianyu. Badnets: Evaluating Backdooring Attacks on Deep Neural Networks[EB/OL]. https://ieeexplore.ieee.org/document/8685687, 2019-12-03.
|
[4] |
WANG B, YAO Yuanshun, SHAN S, et al. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP), May 20-22, 2019, San Francisco, CA, USA. New York: IEEE, 2019: 707-723.
|
[5] |
CHEN Xinyun, LIU Chang, LI Bo, et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning[EB/OL]. https://arxiv.org/pdf/1712.05526.pdf, 2020-08-20.
|
[6] |
SALEM A, WEN Rui, MICHAEL B, et al. Dynamic Backdoor Attacks Against Machine Learning Models[EB/OL]. https://arxiv.org/pdf/2003.03675, 2020-09-25.
|
[7] |
SALEM A, MICHAEL B, ZHANG Yang. Don't Trigger Me! A Triggerless Backdoor Attack Against Deep Neural Networks[EB/OL]. https://arxiv.org/abs/2010.03282, 2020-09-26.
|
[8] |
CHEN B. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering[EB/OL]. https://arxiv.org/pdf/1811.03728.pdf, 2018-09-05
|
[9] |
SHOKRI R. Bypassing Backdoor Detection Algorithms in Deep Learning[C]// IEEE. 2020 IEEE European Symposium on Security and Privacy (EuroS&P), September 7-11, 2020, Virtual, Genoa, Italy. New York: IEEE, 2020: 175-183.
|
[10] |
YAO Yuanshun, LI Huiying, ZHENG Haitao, et al. Latent Backdoor Attacks on Deep Neural Networks[C]// ACM SIGSAC. 2019 ACM SIGSAC Conference on Computer and Communications Security, November 11-15, 2019, London, UK. New York: ACM, 2019: 2041-2055.
|
[11] |
LIU Yingqi, LEE Wenchuan, TAO Guanhong, et al. ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation[C]// ACM SIGSAC. 2019 ACM SIGSAC Conference on Computer and Communications Security, November 11-15, 2019, London, UK. New York: ACM, 2019: 1265-1282.
|
[12] |
CHEN Huili, FU Cheng, ZHAO Jishen, et al. DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural Networks[C]// IJCAI Int. IJCAI International Joint Conference on Artificial Intelligence, August 10-16, 2019, Macao, China. California: IJCAI, 2019: 4658-4664.
|
[13] |
GAO Yansong, XU Change, WANG Derui, et al. STRIP: A Defence Against Trojan Attacks on Deep Neural Networks[C]// ACSAC. In Annual Computer Security Applications Conference, December 9-13, 2019, San Juan, Puerto Rico, USA. New York: ACSAC, 2019: 113-125.
|
[14] |
SALTELLI A. Sensitivity Analysis for Importance Assessment[J]. Risk Analysis, 2002,22(3):579-590.
doi: 10.1111/risk.2002.22.issue-3
URL
|
[15] |
PEI Kexin, CAO Yinzhi, YANG Junfeng, et al. Deepxplore: Automated Whitebox Testing of Deep Learning Systems[C]// SOSP. 26th Symposium on Operating Systems Principles, October 14, 2017, Shanghai, China. New York: ACM, 2017: 1-18.
|