| [1] |
EMPOSHA M. WebShell Detector-Detect and Remove Malicious PHP Scripts[EB/OL]. (2015-10-05)[2025-05-22]. https://github.com/emposha/PHP-Shell-Detector.
|
| [2] |
D-Shield Project. WebShell Detection Tool Official Website[EB/OL]. (2025-04-19)[2025-05-22]. https://www.d99net.net/.
|
| [3] |
NBS System. PHP Malware Finder-Detect PHP Backdoors and Obfuscated Code[EB/OL]. (2022-02-13)[2025-05-22]. https://github.com/nbs-system/php-malware-finder.
|
| [4] |
HIPPO Security. Hippo WebShell Scanner Official Website[EB/OL]. (2023-11-30)[2025-05-22]. https://n.shellpub.com/.
|
| [5] |
DENG L Y, LEE D L, CHEN Y H, et al. Lexical Analysis for the WebShell Attacks[C]// IEEE. 2016 International Symposium on Computer, Consumer and Control. New York: IEEE, 2016: 579-582.
|
| [6] |
HANNOUSSE A, YAHIOUCHE S. Handling WebShell Attacks: A Systematic Mapping and Survey[EB/OL]. (2021-09-01)[2025-06-02]. https://doi.org/10.1016/j.cose.2021.102366.
|
| [7] |
MA Mingrui, HAN Lansheng, ZHOU Chunjie. Research and Application of Artificial Intelligence Based WebShell Detection Model: A Literature Review[EB/OL]. (2024-05-01)[2025-05-22]. https://doi.org/10.48550/arXiv.2405.00066. https://doi.org/10.48550/arXiv.2405.00066
|
| [8] |
PAN Zulie, CHEN Yuanchao, CHEN Yu, et al. WebShell Detection Based on Executable Data Characteristics of PHP Code[J]. Wireless Communications and Mobile Computing, 2021(1): 1-12.
|
| [9] |
WANG Huidi. Research on WebShell Detection Based on Abstract Syntax Tree[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022.
|
|
王晖迪. 基于抽象语法树的WebShell检测研究[D]. 重庆: 重庆邮电大学, 2022.
|
| [10] |
DONG Chengfeng, LI Daofeng. AST-DF: A New WebShell Detection Method Based on Abstract Syntax Tree and Deep Forest[EB/OL]. (2024-04-13) [2025-05-22]. https://doi.org/10.3390/electronics13081482.
|
| [11] |
SHANG Mengchuan, HAN Xueying, ZHAO Changzhi, et al. Multi-Language WebShell Detection Based on Abstract Syntax Tree and TreeLSTM[C]// IEEE. 2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD). New York: IEEE, 2024: 377-382.
|
| [12] |
XIE Bailin, LI Qi. WebShell Detection Based on Explicit Duration Recurrent Network[C]// Springer. 13th International Symposium on Cyberspace Safety and Security. Heidelberg: Springer, 2022: 55-65.
|
| [13] |
LI Tingting, REN Chunhui, FU Yusheng, et al. WebShell Detection Based on the Word Attention Mechanism[J]. IEEE Access, 2019, 7: 185140-185147.
doi: 10.1109/ACCESS.2019.2959950
|
| [14] |
BAI Lu, ZHU Yiqun. WebShellHunter: A New WebShell Detection Method Based on Abstract Syntax Tree and CNN-BiLSTM[C]// ACM. The 2025 5th International Conference on Computer Network Security and Software Engineering. New York: ACM, 2025: 356-362.
|
| [15] |
AN Tongjian, SHUI Xuefei, GAO Hongkui. Deep Learning Based WebShell Detection Coping with Long Text and Lexical Ambiguity[C]// Springer. International Conference on Information and Communications Security. Heidelberg: Springer, 2022: 438-457.
|
| [16] |
PU Ao, FENG Xia, ZHANG Yuhan, et al. BERT-Embedding-Based JSP WebShell Detection on Bytecode Level Using XGBoost[EB/OL]. (2022-08-31) [2025-05-22]. https://doi.org/10.1155/2022/4315829.
|
| [17] |
ALSHINGITI Z, ALAQEL R, AL-MUHTADI J, et al. A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN[EB/OL]. (2023-01-03)[2025-05-22]. https://doi.org/10.3390/electronics12010232.
|
| [18] |
SASIKALA D, CHANDRAKANTH D, REDDY C S P, et al. Inhibiting WebShell Attacks by Random Forest Ensembles with XGBoost[J]. Journal of Information Technology and Digital World, 2022, 4(3): 153-166.
|
| [19] |
WU Yalun, SONG Minglu, LI Yike, et al. Improving Convolutional Neural Network-Based WebShell Detection through Reinforcement Learning[C]// Springer. International Conference on Information and Communications Security. Heidelberg: Springer, 2021: 368-383.
|
| [20] |
LIU Zhiqiang, LI Daofeng, WEI Lulu. A New Method for WebShell Detection Based on Bidirectional GRU and Attention Mechanism[J]. Security and Communication Networks, 2022(1): 1-11.
|
| [21] |
GOGOI B, AHMED T, DINDA R G. PHP WebShell Detection through Static Analysis of AST Using LSTM-Based Deep Learning[C]// IEEE. 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition. New York: IEEE, 2022: 1-6.
|
| [22] |
MA Mingrui, HAN Lansheng, ZHOU Chunjie. Large Language Models are Few-Shot Generators: Proposing Hybrid Prompt Algorithm to Generate WebShell Escape Samples[EB/OL]. (2024-06-05)[2025-05-22]. https://doi.org/10.48550/arXiv.2402.07408.
|
| [23] |
HAN Feijiang, ZHANG Jiaming, DENG Chuyi, et al. Can LLMs Handle WebShell Detection? Overcoming Detection Challenges with Behavioral Function-Aware Framework[EB/OL]. (2025-04-14)[2025-05-22]. https://doi.org/10.48550/arXiv.2504.13811.
|
| [24] |
DONG Shi, SHU Longhui, NIE Shan. Android Malware Detection Method Based on CNN and DNN Hybrid Mechanism[J]. IEEE Transactions on Industrial Informatics, 2024, 20(5): 7744-7753.
|
| [25] |
DONG Shi, SAREM M. DDoS Attack Detection Method Based on Improved KNN with the Degree of DDoS Attack in Software-Defined Networks[J]. IEEE Access, 2019, 8: 5039-5048.
|
| [26] |
XIA Yuanjun, DONG Shi, PENG Tao, et al. Wireless Network Abnormal Traffic Detection Method Based on Deep Transfer Reinforcement Learning[C]// IEEE. 2021 17th International Conference on Mobility, Sensing and Networking. New York: IEEE, 2021: 528-535.
|
| [27] |
WANG Guanyu, KO H J, CHIANG C P, et al. WebShell Detection Based on CodeBERT and Deep Learning Model[C]// ACM. The 2024 5th International Conference on Computing, Networks and Internet of Things. New York: ACM, 2024: 484-489.
|