Netinfo Security ›› 2023, Vol. 23 ›› Issue (1): 44-56.doi: 10.3969/j.issn.1671-1122.2023.01.006
Previous Articles Next Articles
MU Zhiying, XU Jiaquan, LI Xiaoyu()
Received:
2022-08-16
Online:
2023-01-10
Published:
2023-01-19
Contact:
LI Xiaoyu
E-mail:lixiaoyu@nwpu.edu.cn
CLC Number:
MU Zhiying, XU Jiaquan, LI Xiaoyu. Community-Detection-Based Influence Blocking Maximization Algorithm in Social Network[J]. Netinfo Security, 2023, 23(1): 44-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.01.006
[1] | KEMPE D, KLEINBERG J, TARDOS É. Maximizing the Spread of Influence Through a Social Network[C]// ACM. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003: 137-146. |
[2] | HE X, SONG G, CHEN W, et al. Influence Blocking Maximization in Social Networks Under the Competitive Linear Threshold Model[C]// SIAM. Proceedings of the 2012 Siam International Conference on Data Mining. New York: SIAM, 2012: 463-474. |
[3] | CHEN W, YUAN Y, ZHANG L. Scalable Influence Maximization in Social Networks Under the Linear Threshold Model[C]// IEEE. 2010 IEEE International Conference on Data Mining. New York: IEEE, 2010: 88-97. |
[4] | BORGS C, BRAUTBAR M, CHAYES J, et al. Maximizing Social Influence in Nearly Optimal Time[C]// ACM. Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2014: 946-957. |
[5] | TANG Y, XIAO X, SHI Y. Influence Maximization: Near-Optimal Time Complexity Meets Practical Efficiency[C]// ACM. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 75-86. |
[6] | NGUYEN H T, THAI M T, DINH T N. Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-Scale Networks[EB/OL]. [2022-06-20]https://dblp.uni-trier.de/rec/journals/corr/NguyenTD16.html. |
[7] |
BU Z, ZHANG C, XIA Z, et al. A Fast Parallel Modularity Optimization Algorithm (FPMQA) for Community Detection in Online Social Network[J]. Knowledge-Based Systems, 2013, 50: 246-259.
doi: 10.1016/j.knosys.2013.06.014 URL |
[8] | DOMINGOS P, RICHARDSON M. Mining the Network Value of Customers[C]// ACM. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2001: 57-66. |
[9] | CHEN W, LAKSHMANAN L V S, CASTILLO C. Information and Influence Propagation in Social Networks[J]. Synthesis Lectures on Data Management, 2013, 5(4): 170-177. |
[10] | CHEN W, COLLINS A, CUMMINGS R, et al. Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate[C]// SIAM. Proceedings of the 2011 Siam International Conference on Data Mining. Society for Industrial and Applied Mathematics. New York: SIAM, 2011: 379-390. |
[11] | CARNES T, NAGARAJAN C, WILD S M, et al. Maximizing Influence in a Competitive Social Network: A Follower’s Perspective[EB/OL]. [2022-06-25]. http://www.xueshufan.com/publication/2105509646. |
[12] | GOMEZ-RODRIGUEZ M, BALDUZZI D, SCHÖLKOPF B. Uncovering the Temporal Dynamics of Diffusion Networks[EB/OL]. [2022-06-28]. https://ui.adsabs.harvard.edu/abs/2011arXiv1105.0697G/abstract. |
[13] | GOMEZ-RODRIGUEZ M, SCHOLKOPF B. Inf luence Maximization in Continuous Time Diffusion Networks[C]// ACM. Proceedings of the 29th International Conference on Machine Learning. New York: ACM, 2012: 313-320. |
[14] |
DU N, SONG L, GOMEZ-RODRIGUEZ M, et al. Scalable Influence Estimation in Continuous-Time Diffusion Networks[J]. Advances in Neural Information Processing Systems, 2013, 26: 3147-3155.
pmid: 26752940 |
[15] | SAITO K, KIMURA M, OHARA K, et al. Selecting Information Diffusion Models over Social Networks for Behavioral Analysis[C]// Springer. Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2010: 180-195. |
[16] | GOMEZ-RODRIGUEZ M, SONG L, DU N, et al. Influence Estimation and Maximization in Continuous-Time Diffusion Networks[J]. ACM Transactions on Information Systems (TOIS), 2016, 34(2): 1-33. |
[17] | NEWMAN M E J. Spread of Epidemic Disease on Networks[J]. Physical Review E, 2002, 66(1): 180-195. |
[18] | LI Y, CHEN W, WANG Y, et al. Influence Diffusion Dynamics and Influence Maximization in Social Networks with Friend and Foe Relationships[C]// ACM. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. New York: ACM, 2013: 657-666. |
[19] | CLARK A, POOVENDRAN R. Maximizing Influence in Competitive Environments: A Game-Theoretic Approach[C]// Springer. International Conference on Decision and Game Theory for Security. Berlin: Springer, 2011: 151-162. |
[20] |
WANG F, JIANG W, LI X, et al. Maximizing Positive Influence Spread in Online Social Networks via Fluid Dynamics[J]. Future Generation Computer Systems, 2018, 86: 1491-1502.
doi: 10.1016/j.future.2017.05.050 URL |
[21] | RAGHAVAN U N, ALBERT R, KUMARA S. Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks[J]. Physical Review E, 2007, 76(3): 106-117. |
[22] |
ZHAO Y, LI S, JIN F. Identification of Influential Nodes in Social Networks with Community Structure Based on Label Propagation[J]. Neurocomputing, 2016, 210: 34-44.
doi: 10.1016/j.neucom.2015.11.125 URL |
[23] |
SALAVATI C, ABDOLLAHPOURI A, MANBARI Z. Ranking Nodes in Complex Networks Based on Local Structure and Improving Closeness Centrality[J]. Neurocomputing, 2019, 336: 36-45.
doi: 10.1016/j.neucom.2018.04.086 URL |
[24] |
BERAHMAND K, BOUYER A, SAMADI N. A New Local and Multidimensional Ranking Measure to Detect Spreaders in Social Networks[J]. Computing, 2019, 101(11): 1711-1733.
doi: 10.1007/s00607-018-0684-8 URL |
[25] |
RUI X, MENG F, WANG Z, et al. A Reversed Node Ranking Approach for Influence Maximization in Social Networks[J]. Applied Intelligence, 2019, 49(7): 2684-2698.
doi: 10.1007/s10489-018-01398-w URL |
[26] |
WEN T, DENG Y. Identification of Influencers in Complex Networks by Local Information Dimensionality[J]. Information Sciences, 2020, 512: 549-562.
doi: 10.1016/j.ins.2019.10.003 URL |
[27] |
HUANG H, SHEN H, MENG Z, et al. Community-Based Influence Maximization for Viral Marketing[J]. Applied Intelligence, 2019, 49(6): 2137-2150.
doi: 10.1007/s10489-018-1387-8 |
[28] | BHARATHI S, KEMPE D, SALEK M. Competitive Influence Maximization in Social Networks[C]// Springer. International Workshop on Web and Internet Economics. Berlin: Springer, 2007: 306-311. |
[29] |
HIRSCH J E. An Index to Quantify an Individual's Scientific Research Output[J]. Proceedings of the National Academy of Sciences, 2005, 102(46): 16569-16572.
doi: 10.1073/pnas.0507655102 URL |
[30] | LÜ L, ZHOU T, ZHANG Q M, et al. The H-Index of a Network Node and Its Relation to Degree and Coreness[J]. Nature Communications, 2016, 7(1): 1-7. |
[31] |
LIU Q, ZHU Y X, JIA Y, et al. Leveraging Local H-Index to Identify and Rank Influential Spreaders in Networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 512: 379-391.
doi: 10.1016/j.physa.2018.08.053 URL |
[32] |
ZAREIE A, SHEIKHAHMADI A. EHC: Extended H-Index Centrality Measure for Identification of Users’ Spreading Influence in Complex Networks[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514: 141-155.
doi: 10.1016/j.physa.2018.09.064 URL |
[33] |
RUI X, YANG X, FAN J, et al. A Neighbour Scale Fixed Approach for Influence Maximization in Social Networks[J]. Computing, 2020, 102(2): 427-449.
doi: 10.1007/s00607-019-00778-5 URL |
[34] | LI X, ZHOU S, LIU J, et al. Communities Detection in Social Network Based on Local Edge Centrality[EB/OL]. [2022-06-25]. https://www.sciencedirect.com/science/article/abs/pii/S0378437119309173. |
[35] |
NEWMAN M E. Modularity and Community Structure in Networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582.
doi: 10.1073/pnas.0601602103 URL |
[36] | NGUYEN H T, THAI M T, DINH T N. Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-Scale Networks[EB/OL]. [2022-06-29]. https://xueshu.baidu.com/usercenter/paper/show?paperid=cead64288e71fe041608ecc9cd3a6d8e. |
[37] | ARAZKHANI N, MEYBODI M R, REZVANIAN A. Influence Blocking Maximization in Social Network Using Centrality Measures[C]// IEEE. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). New York: IEEE, 2019: 492-497. |
[38] |
SU S, LI X, CHENG X, et al. Location-Aware Targeted Influence Maximization in Social Networks[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 229-241.
doi: 10.1002/asi.23931 URL |
[39] | PAGE L, BRIN S, MOTWANI R, et al. The PageRank Citation Ranking: Bringing Order to the Web[M]. Stanford: Stanford InfoLab, 1999. |
[1] | MA Xiangjun, HE Jingsha, WU Tiejun, FAN Dunqiu. An Approach to Identifying Key Hackers in Social Networks [J]. Netinfo Security, 2023, 23(1): 57-65. |
[2] | Jinsong WANG, Huirong NAN, Honghao ZHANG. Host Behavior Analysis Based on Bipartite Graph Model [J]. Netinfo Security, 2018, 18(12): 1-7. |
[3] | Wei XU, Bo-gang LIN, Si-juan LIN, Yang YANG. Research on Community Detection Method for Social Networks Based on User Interaction and Similarity [J]. Netinfo Security, 2015, 15(7): 77-83. |
[4] | YAN Ling, LI Yi-qun. Research on Identification of Micro-blog Hyper Accounts in Internet Public Opinion Events [J]. 信息网络安全, 2014, 14(9): 26-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||