[1] |
LAKHINA A, CROVELLA M, DIOT C. Mining Anomalies Using Traffic Feature Distributions[J]. ACM SIGCOMM Computer Communication Review, 2005, 35(4):217-228.
doi: 10.1145/1090191.1080118
URL
|
[2] |
LEE D J, BROWNLEE N. A Methodology for Finding Significant Network Hosts[C].//IEEE. 32nd IEEE Conference on Local Computer Networks (LCN 2007). October 15-18, 2007, Dublin, Ireland. Piscataway: IEEE, 2007: 981-988.
|
[3] |
ZIMBA A, CHEN Hongsong, WANG Zhaoshun, et al. Modeling and Detection of the Multi-stages of Advanced Persistent Threats Attacks Based on Semi-supervised Learning and Complex Networks Characteristics[J]. Future Generation Computer Systems, 2020, 106(5):501-517.
doi: 10.1016/j.future.2020.01.032
URL
|
[4] |
HUANG Siyi. Ip Address Characterizing Based on Netflow[D]. Nanjing: Southeast University, 2017.
|
|
黄思逸. 基于流记录的IP地址角色挖掘[D]. 南京:东南大学, 2017.
|
[5] |
MOORE A, ZUEV D, CROGAN M. Discriminators for Use in Flow-based Classification[R]. London: Queen Mary University of London, RR-05-13, 2013.
|
[6] |
SUH K, FIGUEIREDO D R, KUROSE J F, et al. Characterizing and Detecting Skype-relayed Traffic//INFOCOM. The 25th Conference on Computer Communications. April 23-29, 2006, Barcelona, Spain. New York: IEEE, 2006: 2706-2717.
|
[7] |
LI Wei, CANINI M, MOORE A W, et al. Efficient Application Identification and the Temporal and Spatial Stability of Classification Schema[J]. Computer Networks, 2009, 53(6):790-809.
doi: 10.1016/j.comnet.2008.11.016
URL
|
[8] |
GAO Jixiang. NAT Recognition Method Based on Network Traffic Features[D]. Chengdu: University of Electronic Science and Technology of China, 2012.
|
|
高骥翔. 基于网络流量特征的 NAT 识别方法[D]. 成都:电子科技大学, 2012.
|
[9] |
LIU Bin, LI Zhitang, LI Jia. A New Method on P2P Traffic Identification Based on Flow[J]. Journal of Xiamen University(Natural Science), 2007, 2046(2):132-135.
|
|
柳斌, 李之棠, 李佳. 一种基于流特征的 P2P 流量实时识别方法[J]. 厦门大学学报(自然科学版). 2007, 2046(2):132-135.
|
[10] |
CHEN Yiran. Study of the Host Behavior Classification Method Based on The Network Features of Flow and Connection[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
|
|
陈怡然. 基于网络流和连接特征的端主机分类[D]. 成都:电子科技大学, 2016.
|
[11] |
XUE Lihui. Research on Malicious IP Classification Algorithm Based on Big Data Platform[D]. Beijing: Beijing Jiaotong University, 2019.
|
|
薛丽慧. 基于大数据平台的恶意IP分类算法研究[D]. 北京:北京交通大学, 2019.
|
[12] |
ZHAO Yibin. Research on APT Malware Traffic Detection Method Based on Association Rules and Timing[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
|
赵艺宾. 关联规则与时序特征结合的APT恶意软件流量检测方法研究[D]. 成都:电子科技大学, 2020.
|
[13] |
WANG Yong, ZHOU Huiyi, FENG Hao, et al. Network Traffic Classification Method Basing on CNN[J]. Journal on Communications, 2018, 39(1):14-23.
|
|
王勇, 周慧怡, 俸皓, 等. 基于深度卷积神经网络的网络流量分类方法[J]. 通信学报, 2018, 39(1):14-23.
|
[14] |
IDHAMMAD M, AFDEL K, BELOUCH M. Semi-supervised Machine Learning Approach for DDoS Detection[J]. Applied Intelligence, 2018, 48(10):3193-3208.
doi: 10.1007/s10489-018-1141-2
URL
|
[15] |
GU Yonghao, LI Kaiyue, GUO Zhenyang, et al. Semi-supervised K-means DDoS Detection Method Using Hybrid Feature Selection Algorithm[J]. IEEE Access, 2019, 2019(7):64351-64365.
|
[16] |
AHMAD S, LAVIN A, PURDY S, et al. Unsupervised Real-time Anomaly Detection for Streaming Data[J]. Neurocomputing, 2017, 262(1):134-147.
doi: 10.1016/j.neucom.2017.04.070
URL
|
[17] |
XIAO Yawen, WU Jun, LIN Zongli, et al. A Semi-supervised Deep Learning Method Based on Stacked Sparse Auto-encoder for Cancer Prediction Using RNA-seq Data[J]. Computer Methods and Programs in Biomedicine, 2018, 166(11):99-105.
doi: 10.1016/j.cmpb.2018.10.004
URL
|
[18] |
LU Yi, LU Shiyong, FOTOUHI F, et al. FGKA: A Fast Genetic K-means Clustering Algorithm[C].//ACM. Proceedings of the 2004 ACM Symposium on Applied Computing. March 14,2004, Nicosia Cyprus. New York: ACM, 2004: 622-623.
|
[19] |
LIU Anan, SU Yuting, NIE Weizhi, et al. Hierarchical Clustering Multi-task Learning for Joint Human Action Grouping and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(1):102-114.
doi: 10.1109/TPAMI.34
URL
|
[20] |
WANG Yinnian. The Research and Application of Genetic Algorithm[D]. Wuxi: Jiangnan University, 2009.
|
|
王银年. 遗传算法的研究与应用[D]. 无锡:江南大学, 2009.
|
[21] |
WEI Zaoyu. Research on Blockchain Smart Contract Vulnerability Detection Based on Taint Analysis and Genetic Algorithm[D]. Beijing: Beijing University of Posts and Telecommunications, 2020.
|
|
韦早裕. 基于污点分析和遗传算法的区块链智能合约漏洞检测技术研究[D]. 北京:北京邮电大学, 2020.
|