[1] RICHHARIYA R, MANJHWAR A, MAKWANA R.A Hybrid Approach for User to Root and Remote to Local Attack[J]. International Journal of Computer Sciences and Engineering, 2017, 5(6): 73-79. [2] HU Yangrui, CHEN Xingshu, WANG Junfeng, et al.Anomalous Traffic Detection Based on Traffic Behavior Characteristics[J]. Netinfo Security, 2016, 16(11): 45-51. 胡洋瑞,陈兴蜀,王俊峰,等. 基于流量行为特征的异常流量检测[J]. 信息网络安全,2016,16(11):45-51. [3] BAHL S, SHARMA S K.Performance Analysis of User to Root Attack Class Using Correlation Based Feature Selection Model[C]// Springer. 2015 Computational Intelligence in Security for Information Systems Conference, June 15-17, 2015, Burgos, Spain. Heidelberg: Springer, 2015: 177-187. [4] BASHL S, SHARMA S.Detection Rate Analysis for User to Root Attack Class using Correlation Feature Selection[C]// IEEE. International Conference on Computing, Communication & Automation, July 23-25, 2015, Noida, India. New Jersey: IEEE, 2015: 66-71. [5] SHAHBAZ M, WANG Xianbin, Behnad A, et al.On Efficiency Enhancement of the Correlation-based Feature Selection for Intrusion Detection Systems[C]// IEEE. 7th Annual Information Technology, Electronics and Mobile Communication Conference, October 13-15, 2016, Vancouver, BC, Canada. New Jersey: IEEE, 2016: 1-7. [6] XIA Yuming, HU Shaoyong, ZHU Shaomin, et al.Reserch on the Method of Network Attack Detection Based on Convolution Neural Network[J]. Netinfo Security, 2017, 17(11): 32-36. 夏玉明,胡绍勇,朱少民,等. 基于卷积神经网络的网络攻击检测方法研究[J]. 信息网络安全,2017,17(11):32-36. [7] SAHASRABUDDHE A, NAIKADE S, RAMASWAMY R.Survey on Intrusion Detection System Using Data Mining Techniques[J]. International Research Journal of Engineering and Technology, 2017, 4(5): 1780-1784. [8] CHOURE C, PATIL L H.A Literature Survey on Intrusion Detection and Protection System Using Data Mining[J]. International Journal of Advance Research, Ideas and Innovations in Technology, 2018, 4(1): 61-65. [9] 戚名钰,刘铭,傅彦铭. 基于PCA的SVM网络入侵检测研究[J]. 信息网络安全,2015,15(2):15-18: QI Mingyu, LIU Ming, FU Yanming.Research on Network Intrusion Detection Using Support Vector Machines Based on Principal Component Analysis[J]. Netinfo Security, 2015, 15(2): 15-18. [10] ZHAO Jing, WEI Bin, LUO Peng, et al.Intrusion Detection Method Based on Hidden Markov Model[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(1): 106-110. 赵婧,魏彬,罗鹏,等. 基于隐马尔可夫模型的入侵检测方法[J]. 四川大学学报:工程科学版,2016,48(1):106-110. [11] FARNAAZ N, JABBAR M A. Random Forest Modeling for Network Intrusion Detection System[EB/OL]. https://core.ac.uk/download/pdf/82689462.pdf, 2018-1-11. [12] LIN Weining, CHEN Mingzhi, ZHAN Yunqing, et al.Research on an Intrusion Detection Algorithm Based on PCA and Random-forest Classification[J]. Netinfo Security, 2017, 17(11): 50-54. 林伟宁,陈明志,詹云清,等. 一种基于PCA和随机森林分类的入侵检测算法研究[J]. 信息网络安全,2017,17(11):50-54. [13] ADNAN M.Improving the Random Forest Algorithm by Randomly Varying the Size of the Bootstrap Samples[C]// IEEE. 15th International Conference on Information Reuse and Integration, August 13-15, 2014, Redwood City, CA, USA. New Jersey: IEEE, 2014: 303-308. [14] BIAU G, SCORNET E.A Random Forest Guided Tour[J]. TEST, 2016, 25(2): 197-227. [15] DUBITZKY W, WOLKENHAUER O, CHO K H, et al.Student’s t-Test[J]. Encyclopedia of Systems Biology, 2013, 17(4): 124-141. [16] KIM K.T Test as a Parametric Statistic[J]. Korean Journal Anesthesiology, 2015, 68(6): 540-546. [17] MERNIK M, LIU S, KARABOGA D.On Clarifying Misconceptions when Comparing Variants of the Artificial Bee Colony Algorithm by Offering a New Implementation[J]. Information Sciences an International Journal, 2015, 291(C): 115-127. [18] KONG Xiangyu, LIU Sanyang, WANG Zhen.A New Hybrid Artificial Bee Colony Algorithm for Global Optimization[J]. International Journal of Computer Science Issues, 2013, 10(1): 287-301. [19] MOHAMED A.An Efficient Modified Differential Evolution Algorithm for Solving Constrained Non-linear Integer and Mixed-integer Global Optimization Problems[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(3): 989-1007. [20] INGRE B, YADAV A, SONI A K.Decision Tree Based Intrusion Detection System for NSL-KDD Dataset[C]// Springer. 2017 International Conference on Information and Communication Technology for Intelligent Systems, March 25-26, 2017, Ahmedabad, India. Heidelberg: Springer, 2017: 207-218. [21] MEENA G, CHOUDHARY R.A Review Paper on IDS Classification Using KDD 99 and NSL KDD Dataset in WEKA[C]// IEEE. 2017 International Conference on Computer, Communications and Electronics, July 1-2, 2017, Jaipur, India. New Jersey: IEEE, 2017: 553-558. [22] UNB. NSL-KDD Dataset[EB/OL]. http://www.unb.ca/cic/datasets/nsl.html, 2017-7-10. |