[1] 石勇, 刘巍伟, 刘博. 工业控制系统(ICS)的安全研究[J]. 网络安全技术与应用, 2008, (4): 40-41. [2] 彭勇,江常青,谢丰,等. 工业控制系统信息安全研究进展[J]. 清华大学学报(自然科学版), 2012, 52(10): 1396-1408. [3] 张延. 工业控制系统信息安全动向及发展对策研究[J]. 电子产品可靠性与环境试验, 2012, 30(6): 48-53. [4] 程鹏, 工业控制系统信息安全[J]. 信息安全与通信保密, 2014, (1): 31-32. [5] Dietterieg, T.Machine-learning research:Four current directions [J].The AI Magazine, 1998, (18): 97-136. [6] 朱世顺,黄益彬,朱应飞,等. 工业控制系统信息安全防护关键技术研究[J]. ELECTRIC POWER ICT, 2013, 11(11): 106-109. [7] 于立业,薛向荣,张云贵,等. 工业控制系统信息安全解决方案[J]. 冶金自动化, 2013, 37(1): 5-11. [8] Jay B, James C F, JeIIrey P, et al. Snort 2.0 Intrusion Detection Syngress, Feb 2003 [EB/OL]. http:// security, frost, org/ebooks/,2012-06-18. [9] Peterson D. Quickdraw: Generating security log events for legacy SCADA and control system devices[C]. In: Conlerence for Homeland Security on Cybersecurity Applications & Technology, 2009,CATCH'09. Washington DC, USA: IEEE Press, 2009, pp. 227-229. [10] Morris T, Vaughn R, Dandass Y. A retrofit network intrusion detection system for MODBUS RTU and ASCII industrial control systems[C]. In: HICSS 2012. Kauai, USA Institute oI Electrical and Electronics Engineers Computer Society, 2012, pp. 2338-234. [11] Roosta T, Nilsson D, Lindqvist U, et al. An intrusion detection system for wireless process control systems[C]. In: The 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems. Atlanta, USA: IEEE Press, 2008, pp. 866-872. [12] Cheung S,Valdes A. Communication pattern ano-maly detection in process control systems[C]. In: IEEE International Conference on Technologies for Homeland Security.Waltham, USA: IEEE Press, 2009:1-8. [13] Valdes A, Cheung S. Intrusion monitoring in process control systems[C]. In: Proceedings of the 42nd Hawaii International Conference on System Sciences. Big Island, USA; IEEE Computer Society Press, 2009, pp. 21-28. [14] Rrushi J,Kang K. Detecting anomalies in process control networks[C]. In: Critical Infrastructure Protection III. IFIP Advances in Information and Communication Technology. Heisenberg, Uermany; Springer, 2009, pp. 151-165. [15] Gao W, Morris T, Reaves B, et al. On SCADA control system command and response injection and intrusion detection [C]. In: Proceedings of 2010 IEEE eCrime Researchers Summit. Dallas, USA: IEEE Press, 2010, pp. 1-8. [16] Zhu B, Joseph A, Sastry S. A taxonomy of cyber attacks on SCADA systems[C]. In: Proceedings of the 2011 International Conference on Internet of Things and the 4th International Conference on C'yber, Physical and Social Computing (ITHINUSC'PSC'OM'11). Washington DC, USA: IEEE Computer Society, 2011, pp. 380-388. [17] M. P. Perrone, L. N. Cooper, When networks disagree: ensemble methods for hybrid neural networks[R], Tech. Rep. A121062, Brown University, Institute for Brain and Neural Systems (Jan. 1993). [18] Granitto, P. M., Verdes, P. F., Ceccatto, H. A. Neural networks ensembles: evaluation of aggregation algorithms [J]. Artificial Intelligence, 2005, 163(2): 139-162. [19] Z.H. Zhou, J. Wu, W. Tang. Ensembling neural networks: many could be better than all[J], Artificial Intelligence, 2002, 137(1-2): 239-263. [20] Chandra, A., Chen, H. H., Yao, X. Trade-off between diversity and accuracy in ensemble generation[J]. Studies in Computational Intelligence, 2006, (16): 429-464. [21] G. Brown, J.L. Wyatt, P. Tino. Managing diversity in regression ensembles, Journal of Machine Learning Research, 2005, (6): 1621-1650. [22] Ioannis Partalas, Grigorios Tsoumakas, Evaggelos V,et al. Greedy regression ensemble selection: Theory and an application to water quality prediction [J], Information Sciences, 2008, (178): 3867-3879. [23] Shasha Mao, L.C. Jiao, LinXiong, et al. Greedy optimization classifiers ensemble based on diversity [J]. Pattern Recognition, 2011,(44): 1245-1261. [24] Wang., D. H., Alhamdoosh, M. Evolutionary Extreme Learning Machine Ensembles with Size Control[J], Neurocomputing, 2013,(102): 98-110. [25] Canuto, A. M., Abreu, M. C. C., Oliveira, L. M. J., et al. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles [J]. Pattern Recognition Letters, 2007, 28(4): 472-486. [26] Tang, J., Chai, T. Y., Yu, W., et al. Modeling Load Parameters of Ball Mill in Grinding Process Based on Selective Ensemble Multisensor Information [J]. IEEE Transactions on Automation Science and Engineering, 10.1109/TASE.2012.2225142. [27] Symone Soares, CarlosHenggelerAntunes, RuiAraújo. Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development [J]. Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013,(05):024. [28] Cauwenberghs, G., Poggio, T. Incremental and decremental support vector machine learning [C]. in Advances in Neural Information Processing Systems (NIPS 2000), 2001, pp. 409-415. [29] Laskov, P., Gehl, C., Kruger, S., et al. Incremental support vector learning: Analysis, implementation and applications [J]. J. Mach.Learning Res., 2006, (7): 1909-1936. [30] Karasuyama, M., Takeuchi, I. Multiple incremental decremental learning of support vector machines[J]. IEEE Transations on Neural Networks, 2010, 21(7): 1048-1059. [31] Yu, W. Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms[J]. Information Sciences, 2004, 158(1): 131-147. [32] Engel, Y., Mannor, S., Meir, R. The kernel recursive least-squares algorithm[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2275-2285. [33] Yu, W. Fuzzy modelling via on-line support vector machines[J].International Journal of Systems Science, 2010, 41(11):1325-1335. [34] Francesco, O., Claudio, C., Barbara, C., et al. On-line independent support vector machines [J]. Pattern Recognition, 2010, 43(4): 1402-1412. [35] Li, L. J., Su, H. Y., Chu, J. Modeling of isomerization of C8 aromatics by online least squares support vector machine [J]. Chinese Journal of Chemical Engineering, 2009, 17(3): 437-444. [36] Tang, J., Yu, W., Zhao, L. J., et al. Modeling of operating parameters for wet ball mill by modified GA-KPLS [C]. The Third International Workshop on Advanced Computational Intelligence, 2010, pp. 107-111. [37] Qin, Z. M., Liu, J. Z., Zhang, L. Y., et al. Online learning algorithm for sparse kernel partial least squares [C]. The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2010, pp. 1790-1794. [38] Tang J, Yu W, Chai T Y, et al. On-line principal component analysis with application to process modeling[J]. Neurocomputing, 2012, 82(1): 167-178. [39] Tang J, Zhao L J, Yu W, et al. Modied recursive partial least squares algorithm with application to modeling parameters of ball mill load[C]. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011:5277-5282. [40] 汤健,柴天佑,余文,等. 在线KPLS建模方法及在磨机负荷参数集成建模中的应用 [J]. 自动化学报,2013,6(7): 111-122. [41] Kadlec, P., Grbic, R., Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors [J]. Computers & Chemical Engineering, 2011, 35(1): 1-24. [42] KeTang, MinlongLin, FernandaL.Minku, et al. Selective negative correlation learning approach to incremental learning[J], Neurocomputing, 2009,(72): 2796-2805. [43] M. Heeswijk, Y. Miche, T. Lindh-Knuutila, et al. Adaptive ensemble models of extreme learning machines for time series prediction[C]. in: Proceedings of the 19th International Conference on Artificial Neural Networks, Springer-Verlag, 2009, pp. 305-314. [44] H.-X. Tian, Z.-Z. Mao, An ensemble ELM based on modified Adaboost. RT algorithm for predicting the temperature of molten steel in ladle furnace[J]. IEEE Trans. Autom. Sci. Eng. , 2010, 7 (1): 73-80. [45] 郝红卫,王志彬,殷绪成,等. 分类器的动态选择与循环集成方法[J]. 自动化学报,2011,37(11): 1290-1295. [46] Qun Dai. A competitive ensemble pruning approach based on cross-validation technique [J]. Knowledge-Based Systems, 2013, (37): 394-414. |