信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 828-839.doi: 10.3969/j.issn.1671-1122.2025.05.014

• 技术研究 • 上一篇    下一篇

基于小波分解与动态密集空洞卷积的双分支神经网络水印算法

李敬有1,2, 席晓天1,2(), 魏荣乐1,2, 张光妲1,2   

  1. 1.齐齐哈尔大学计算机与控制工程学院,齐齐哈尔 161006
    2.黑龙江省大数据网络安全检测分析重点实验室,齐齐哈尔 161006
  • 收稿日期:2025-02-25 出版日期:2025-05-10 发布日期:2025-06-10
  • 通讯作者: 席晓天 450839276@qq.com
  • 作者简介:李敬有(1974—),男,吉林,教授,硕士,CCF会员,主要研究方向为信息安全|席晓天(1997—),男,江苏,硕士研究生,主要研究方向为数字水印技术|魏荣乐(1999—),男,湖北,硕士研究生,主要研究方向为数字水印技术|张光妲(1975—),女,黑龙江,副教授,硕士,主要研究方向为网络与信息安全
  • 基金资助:
    国家自然科学基金(42271409);黑龙江省省属高等学校基本科研业务费(145409441)

Double Branch Neural Network Watermarking Algorithm Based on Wavelet Decomposition and Dynamic Dense Dilated Convolution

LI Jingyou1,2, XI Xiaotian1,2(), WEI Rongle1,2, ZHANG Guangda1,2   

  1. 1. School of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China
    2. Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar 161006, China
  • Received:2025-02-25 Online:2025-05-10 Published:2025-06-10

摘要:

基于深度学习的数字水印算法主要倾向于向载体图像的中高频区域嵌入水印信息,只使用卷积神经网络将水印信息映射到载体图像的特征空间中,忽略了频域算法的作用。文章提出一种基于小波分解与动态密集空洞卷积的双分支神经网络水印算法,通过使用小波分解,更好地引导水印信息的嵌入和提取。该算法运用离散小波变换处理载体图像与水印图像,将其分解为高频信息和低频信息,再使用神经网络进行针对性学习,使用动态密集空洞卷积在减少神经网络层数的情况下,扩大感受野,增强捕捉全局信息的能力,也能避免使用过多的池化层影响重建图像的质量。实验表明,该算法拥有良好的不可见性和鲁棒性。

关键词: 双分支神经网络, 离散小波变换, 空洞卷积, 数字水印

Abstract:

Deep learning based digital watermarking algorithms mainly tended to embed watermark information into the mid to high frequency regions of the carrier image. They only used convolutional neural networks to map the watermark information to the feature space of the carrier image and ignored the role of frequency domain algorithms. The article proposed a dual branch neural network watermarking algorithm based on wavelet decomposition and dynamic dense dilated convolution. By using wavelet decomposition, it better guided the embedding and extraction of watermark information. This algorithm used discrete wavelet transform to process carrier images and watermark images, decomposed them into high-frequency and low-frequency information, and then used neural networks for targeted learning. Dynamic dense dilated convolution was used to expand the receptive field, enhanced the ability to capture global information while reducing the number of neural network layers. It could also avoid using too many pooling layers that affected the quality of reconstructed images. The experiment show that the algorithm has good invisibility and robustness.

Key words: dual branch neural network, discrete wavelet transform, hollow convolution, digital watermark

中图分类号: