信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 689-699.doi: 10.3969/j.issn.1671-1122.2025.05.002

• 理论研究 • 上一篇    下一篇

融合时序特征的IEC 61850网络攻击智能检测方法

李俊娥1,2(), 马子玉1,2, 陆秋余1,2, 俞凯龙1,2   

  1. 1.武汉大学国家网络安全学院,武汉 430072
    2.武汉大学空天信息安全与可信计算教育部重点实验室,武汉 430072
  • 收稿日期:2024-07-04 出版日期:2025-05-10 发布日期:2025-06-10
  • 通讯作者: 李俊娥 jeli@whu.edu.cn
  • 作者简介:李俊娥(1966—),女,河北,教授,博士,主要研究方向为网络安全、电力信息物理系统、电力工控安全|马子玉(2000—),男,河北,硕士研究生,主要研究方向为电力工控安全|陆秋余(1996—),女,浙江,博士研究生,主要研究方向为电力信息物理系统、电力工控安全|俞凯龙(2000—),男,福建,硕士研究生,主要研究方向为电力工控安全
  • 基金资助:
    国家自然科学基金(62472324)

An Intelligent Detection Method for IEC 61850 Network Attacks Incorporating Temporal and Sequence Features

LI Jun’e1,2(), MA Ziyu1,2, LU Qiuyu1,2, YU Kailong1,2   

  1. 1. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
    2. Key Laboratory of Aerospace Information Security and Trusted Computing of Ministry of Education, Wuhan University, Wuhan 430072, China
  • Received:2024-07-04 Online:2025-05-10 Published:2025-06-10

摘要:

针对现有基于人工智能的IEC 61850网络攻击检测方法存在的时序关系建模不足与可解释性缺失问题,文章提出一种融合时序特征的IEC 61850网络攻击智能检测方法。该方法基于滑动窗口提取IEC 61850报文的字段特征和时序特征,通过激活函数优化、批归一化算法引入及全连接层维度缩减对AlexNet模型进行改进,并将其作为检测模型,基于梯度加权类激活映射算法生成类激活图,对检测结果进行解释。实验结果表明,在检测IEC 61850网络攻击时,文章所提方法的准确率高于现有方法,并且能够生成具有结果相关特征标记的类激活图,从而帮助判断检测结果的可信性,并掌握攻击所利用的报文特征细节。

关键词: IEC 61850, 网络攻击检测, 报文特征, 改进AlexNet, 可解释性

Abstract:

The current intelligent detection methods for IEC 61850 network attacks consider the temporal and sequence features between messages insuficiently and lack of interpretability. To address this issue, an intelligent detection method for IEC 61850 network attacks Incorporating Temporal and sequence features was proposed. Field features and sequence features were extracted with the use of sliding window. The improved AlexNet with optimized activation function, batch normalization algorithm and less dimension of the full connection layers was used as the detection model. Class activation picture generated by gradient-weighted class activation mapping was used for the result interpretation. The experimental results in defediry IEC 61850 network attacks show that the proposed method has a higher accuracy than current methods and can generate class activation pictures with result-related feature markers, which can help to determine the reliability of the result and grasp the details of the attack features.

Key words: IEC 61850, network attack detection, message feature, improved AlexNet, interpretability

中图分类号: