信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 689-699.doi: 10.3969/j.issn.1671-1122.2025.05.002
李俊娥1,2(
), 马子玉1,2, 陆秋余1,2, 俞凯龙1,2
收稿日期:2024-07-04
出版日期:2025-05-10
发布日期:2025-06-10
通讯作者:
李俊娥 作者简介:李俊娥(1966—),女,河北,教授,博士,主要研究方向为网络安全、电力信息物理系统、电力工控安全|马子玉(2000—),男,河北,硕士研究生,主要研究方向为电力工控安全|陆秋余(1996—),女,浙江,博士研究生,主要研究方向为电力信息物理系统、电力工控安全|俞凯龙(2000—),男,福建,硕士研究生,主要研究方向为电力工控安全
基金资助:
LI Jun’e1,2(
), MA Ziyu1,2, LU Qiuyu1,2, YU Kailong1,2
Received:2024-07-04
Online:2025-05-10
Published:2025-06-10
摘要:
针对现有基于人工智能的IEC 61850网络攻击检测方法存在的时序关系建模不足与可解释性缺失问题,文章提出一种融合时序特征的IEC 61850网络攻击智能检测方法。该方法基于滑动窗口提取IEC 61850报文的字段特征和时序特征,通过激活函数优化、批归一化算法引入及全连接层维度缩减对AlexNet模型进行改进,并将其作为检测模型,基于梯度加权类激活映射算法生成类激活图,对检测结果进行解释。实验结果表明,在检测IEC 61850网络攻击时,文章所提方法的准确率高于现有方法,并且能够生成具有结果相关特征标记的类激活图,从而帮助判断检测结果的可信性,并掌握攻击所利用的报文特征细节。
中图分类号:
李俊娥, 马子玉, 陆秋余, 俞凯龙. 融合时序特征的IEC 61850网络攻击智能检测方法[J]. 信息网络安全, 2025, 25(5): 689-699.
LI Jun’e, MA Ziyu, LU Qiuyu, YU Kailong. An Intelligent Detection Method for IEC 61850 Network Attacks Incorporating Temporal and Sequence Features[J]. Netinfo Security, 2025, 25(5): 689-699.
表5
不同AlexNet模型的实验结果
| 模型类型 | 激活函数 | 归一化 方法 | 全连接层 参数 | Acc | F1分数 | 训练时间/min | |
|---|---|---|---|---|---|---|---|
| FC6参数 | FC7参数 | ||||||
| 本文方法 | Leaky ReLU | 批归一化 | 1024 | 512 | 99.70% | 0.9969 | 209.84 |
| AlexNet | ReLU | LRN | 4096 | 1024 | 98.81% | 0.9881 | 370.65 |
| AlexNet-1 | Leaky ReLU | LRN | 4096 | 1024 | 99.55% | 0.9947 | 390.18 |
| AlexNet-2 | ReLU | 批归一化 | 4096 | 1024 | 99.49% | 0.9945 | 385.10 |
| AlexNet-3 | ReLU | LRN | 1024 | 512 | 98.95% | 0.9886 | 191.53 |
| AlexNet-4 | Leaky ReLU | 批归一化 | 4096 | 1024 | 99.68% | 0.9966 | 401.38 |
| AlexNet-5 | Leaky ReLU | LRN | 1024 | 512 | 99.51% | 0.9949 | 201.75 |
| AlexNet-6 | ReLU | 批归一化 | 1024 | 512 | 99.39% | 0.9938 | 199.68 |
| [1] | IEC 61850-7-420 Communication Networks and Systems for Power Utility Automation-Part 7-420: Basic Communication Structure-Distributed Energy Resources Logical Nodes[S]. London: International Electrotechnical Commission, 2009. |
| [2] | DL/T 860.7420 Communication Networks and Systems for Power Utility Automation Part 7-420: Basic Communication Structure-Distributed Energy Resources Logical Nodes[S]. Beijing: China Electric Power Press, 2012. |
| DL/T 860.7420 电力自动化通信网络和系统第7-420部分:基本通信结构—分布式能源逻辑节点[S]. 北京: 中国电力出版社, 2012. | |
| [3] | ZHANG Jie, LI Jun’e, CHEN Xiong, et al. A Security Scheme for Intelligent Substation Communications Considering Real-Time Performance[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(4): 948-961. |
| [4] | FIGUEROA-LORENZO S, AÑORGA J, ARRIZABALAGA S. A Survey of IIoT Protocols[J]. ACM Computing Surveys, 2021, 53(2): 1-53. |
| [5] | HABIB H F, LASHWAY C R, MOHAMMED O A. A Review of Communication Failure Impacts on Adaptive Microgrid Protection Schemes and the Use of Energy Storage as a Contingency[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1194-1207. |
| [6] | QUINCOZES S E, ALBUQUERQUE C, PASSOS D, et al. A Survey on Intrusion Detection and Prevention Systems in Digital Substations[EB/OL]. (2021-01-15)[2024-06-20]. https://doi.org/10.1016/j.comnet.2020.107679. |
| [7] | YOO H, SHON T. Novel Approach for Detecting Network Anomalies for Substation Automation Based on IEC 61850[J]. Multimedia Tools and Applications, 2015, 74(1): 303-318. |
| [8] | USTUN T S, SUHAIL H S M, ULUTAS A, et al. Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 GOOSE Messages[J]. Symmetry, 2021, 13(5): 826-857. |
| [9] | WANG Sheng, TANG Chao, ZHANG Linghao, et al. Research on Network Security Abnormal Flow Analysis Method for IEC 61850 Intelligent Substation[J]. Journal of Chongqing University, 2022, 45(1): 1-8. |
| 王胜, 唐超, 张凌浩, 等. 面向IEC61850智能变电站的网络安全异常流量分析方法[J]. 重庆大学学报, 2022, 45(1): 1-8. | |
| [10] | IJEH V O, MORSI W G. Smart Grid Cyberattack Types Classification: A Fine Tree Bagging-Based Ensemble Learning Approach with Feature Selection[EB/OL]. (2024-06-01)[2024-06-20]. https://doi.org/10.1016/j.segan.2024.101291. |
| [11] | ZHOU Niancheng, LIAO Jianquan, WANG Qianggang, et al. Analysis and Prospect of Deep Learning Application in Smart Grid[J]. Automation of Electric Power Systems, 2019, 43(4): 180-191. |
| 周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望[J]. 电力系统自动化, 2019, 43(4): 180-191. | |
| [12] | TIAN Weihong. Research and Implementation of Network Anomaly Detection Method in Smart Substation[D]. Shenyang: Chinese Academy of Sciences (Shenyang Institute of Computing Technology), 2020. |
| 田伟宏. 智能变电站网络异常检测方法的研究与实现[D]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2020. | |
| [13] | WANG Xuelei, FIDGE C, NOURBAKHSH G, et al. Anomaly Detection for Insider Attacks from Untrusted Intelligent Electronic Devices in Substation Automation Systems[J]. IEEE Access, 2022, 10: 6629-6649. |
| [14] | ABU N A, MORSI W G. Detection of Cyber-Attacks and Power Disturbances in Smart Digital Substations Using Continuous Wavelet Transform and Convolution Neural Networks[EB/OL]. (2024-04-01)[2024-06-20]. https://doi.org/10.1016/j.epsr.2024.110157. |
| [15] | DUAN Yujing, ZHANG Yupeng. Enhancing Smart Grid Security:A Novel Approach for Efficient Attack Detection Using SMART Framework[EB/OL]. (2024-01-24)[2024-06-20]. https://doi.org/10.1016/j.measen.2023.101015. |
| [16] | HONG J H, LIU C C, GOVINDARASU M. Detection of Cyber Intrusions Using Network-Based Multicast Messages for Substation Automation[C]// IEEE. 2014 IEEE Innovative Smart Grid Technologies. New York: IEEE, 2014: 1-5. |
| [17] | RASHID M T A, YUSSOF S, YUSOFF Y, et al. A Review of Security Attacks on IEC 61850 Substation Automation System Network[C]// IEEE. Proceedings of the 6th International Conference on Information Technology and Multimedia. New York: IEEE, 2014: 5-10. |
| [18] | ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. |
| 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. | |
| [19] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
| [20] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
| [21] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2015-04-10)[2024-06-20]. https://doi.org/10.48550/arXiv.1409.1556. |
| [22] |
GUO Mingang, GONG He. Research on AlexNet Improvement and Optimization Method[J]. Computer Engineering and Applications, 2020, 56(20): 124-131.
doi: 10.3778/j.issn.1002-8331.1907-0135 |
|
郭敏钢, 宫鹤. AlexNet改进及优化方法的研究[J]. 计算机工程与应用, 2020, 56(20): 124-131.
doi: 10.3778/j.issn.1002-8331.1907-0135 |
|
| [23] | IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]// ACM. Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York: ACM, 2015: 448-456. |
| [24] |
CHENG Xiaohui, LI Yu, KANG Yanping. Double Standard Pruning of Convolution Network Based on Feature Extraction of Intermediate Graph[J]. Computer Engineering, 2023, 49(3): 105-112.
doi: 10.19678/j.issn.1000-3428.0064206 |
|
程小辉, 李钰, 康燕萍. 基于中间图特征提取的卷积网络双标准剪枝[J]. 计算机工程, 2023, 49(3): 105-112.
doi: 10.19678/j.issn.1000-3428.0064206 |
|
| [25] |
RUDIN C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[J]. Nature Machine Intelligence, 2019, 1(5): 206-215.
doi: 10.1038/s42256-019-0048-x pmid: 35603010 |
| [26] | ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning Deep Features for Discriminative Localization[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 2921-2929. |
| [27] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[C]// IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2017: 618-626. |
| [28] | ZEMANEK S, HACKER I, WOLSING K, et al. PowerDuck: A GOOSE Data Set of Cyberattacks in Substations[C]// ACM. Proceedings of the 15th Workshop on Cyber Security Experimentation and Test. New York: ACM, 2022: 49-53. |
| [29] | GASPAR J, CRUZ T, LAM C T, et al. Smart Substation Communications and Cybersecurity: A Comprehensive Survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2456-2493. |
| [1] | 张双全, 殷中豪, 张环, 高鹏. 基于残差卷积神经网络的网络攻击检测技术研究[J]. 信息网络安全, 2025, 25(2): 240-248. |
| [2] | 刘宇啸, 陈伟, 张天月, 吴礼发. 基于稀疏自动编码器的可解释性异常流量检测[J]. 信息网络安全, 2023, 23(7): 74-85. |
| [3] | 陈良臣, 刘宝旭, 高曙. 网络攻击检测中流量数据抽样技术研究[J]. 信息网络安全, 2019, 19(8): 22-28. |
| [4] | 夏玉明, 胡绍勇, 朱少民, 刘丽丽. 基于卷积神经网络的网络攻击检测方法研究[J]. 信息网络安全, 2017, 17(11): 32-36. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||