信息网络安全 ›› 2024, Vol. 24 ›› Issue (11): 1773-1782.doi: 10.3969/j.issn.1671-1122.2024.11.016

• 入选论文 • 上一篇    下一篇

基于提示学习的案件知识图谱构建方法及应用研究

秦振凯1,2(), 徐铭朝1,3, 蒋萍1,2   

  1. 1.广西警察学院信息技术学院,南宁 530028
    2.广西警察学院公安大数据现代产业学院,南宁 530028
    3.广东万通信息科技有限公司,中山 528403
  • 收稿日期:2024-06-10 出版日期:2024-11-10 发布日期:2024-11-21
  • 通讯作者: 秦振凯 qinzhenkai@gxjcxy.edu.cn
  • 作者简介:秦振凯(1996—),男,广西,高级工程师,硕士研究生,CCF会员,主要研究方向为知识图谱和大语言模型|徐铭朝(2002—),男,广西,本科,主要研究方向为知识图谱|蒋萍(1981—),女,广西,教授,硕士,CCF会员,主要研究方向为自然语言处理
  • 基金资助:
    广西重点研发计划(AB22035034)

Research on the Construction Method and Application of Case Knowledge Graph Based on Prompt Learning

QIN Zhenkai1,2(), XU Mingchao1,3, JIANG Ping1,2   

  1. 1. School of Information Technology, Guangxi Police College, Nanning 530028, China
    2. Modern Industry College of Public Security Big Data, Guangxi Police College, Nanning 530028, China
    3. Guangdong Wantong Information Technology Co., Ltd., Zhongshan 528403, China
  • Received:2024-06-10 Online:2024-11-10 Published:2024-11-21

摘要:

针对传统案件处理和分析方法效率低、耗时长的问题,文章提出一种构建案件知识图谱的方法,旨在提高案件处理效率,增强案件分析的深度和广度,为公安人员提供更加全面和精准的案件信息支持。首先,在OneKE大语言模型的基础上融入CasePrompt提示学习方法,提出案例事件抽取模型。然后,根据案件领域数据搭建知识图谱概念层架构,使用案例事件抽取模型实现实体抽取。最后,将结构化案件数据转化为三元组形式存入Neo4j图数据库,实现基于提示学习的案件知识图谱构建。实验结果表明,提示学习微调的大模型相比传统深度学习模型展现了更优秀的事件抽取性能,能够有效识别并抽取案件文本数据中的事件信息,进而构建高质量的案件知识图谱,从而提升案件分析效率。

关键词: 案件知识图谱, 提示学习, 大语言模型, 智慧警务

Abstract:

To address the inefficiencies and time-consuming nature of traditional case processing and analysis methods, this study proposed a method for constructing case knowledge graphs aimed at improving case handling efficiency and enhancing the depth and breadth of case analysis. This method provided law enforcement personnel with more comprehensive and accurate case information support. Firstly, the CasePrompt prompt learning method was integrated into the OneKE large language model, leading to the development of a case event extraction model. Secondly, based on case domain data, a conceptual layer architecture for the knowledge graph was built, and the case event extraction model was used to achieve entity extraction. Finally, the extracted structured case data was converted into triplets and stored in the Neo4j graph database, realizing the construction of a case knowledge graph based on prompt learning. Experimental results show that the prompt learning fine-tuned large model demonstrates superior event extraction performance compared to traditional deep learning models. It effectively identifies and extracts event information from case text data, enabling the construction of high-quality case knowledge graphs, thereby enhancing case analysis efficiency.

Key words: case knowledge graph, prompt learning, large language model, smart policing

中图分类号: