信息网络安全 ›› 2024, Vol. 24 ›› Issue (9): 1386-1395.doi: 10.3969/j.issn.1671-1122.2024.09.007

• 研究论文 • 上一篇    下一篇

面向骨骼动作识别的优化梯度感知对抗攻击方法

陈晓静1, 陶杨1, 吴柏祺2, 刁云峰2()   

  1. 1.安徽大学互联网学院,合肥 230039
    2.合肥工业大学计算机与信息学院,合肥 230009
  • 收稿日期:2023-10-30 出版日期:2024-09-10 发布日期:2024-09-27
  • 通讯作者: 刁云峰 diaoyunfeng@hfut.edu.cn
  • 作者简介:陈晓静(1990—),女,安徽,副教授,博士,主要研究方向为计算机视觉、量子通信|陶杨(1998—),女,安徽,硕士研究生,主要研究方向为计算机视觉、人工智能安全|吴柏祺(2003—),男,安徽,主要研究方向为人工智能安全、数据安全及隐私保护|刁云峰(1993—),男,山东,讲师,博士,CCF会员,主要研究方向为人工智能安全、计算机视觉
  • 基金资助:
    国家自然科学基金(12001002);国家自然科学基金(62302139);中央高校基本科研业务费专项资金(JZ2023HGQA0101);中央高校基本科研业务费专项资金(JZ2023HGTA0202)

Optimization Gradient Perception Adversarial Attack for Skeleton-Based Action Recognition

CHEN Xiaojing1, TAO Yang1, WU Baiqi2, DIAO Yunfeng2()   

  1. 1. School of Internet, Anhui University, Hefei 230039, China
    2. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2023-10-30 Online:2024-09-10 Published:2024-09-27

摘要:

基于骨骼的动作识别模型被广泛应用于自动驾驶、行为监测和动作分析等领域。一些研究表明,这些模型容易受到对抗攻击,引发了一系列安全漏洞和隐私问题。虽然现有攻击方法在白盒攻击下能够取得较高的成功率,但是这些方法都需要攻击者获得模型的全部参数,这在现实场景中不易实现,且在黑盒攻击下的可迁移性较差。为了解决上述问题,文章提出一种面向骨骼动作识别的优化梯度感知对抗攻击方法NAG-PA。该方法在梯度计算的每次迭代中都优先估计下一步参数更新后的值,并在更新后的位置进行梯度累积。同时,对当前位置进行修正,避免落入局部极值,从而提高对抗样本的可迁移性。此外,文章所提方法还使用了感知损失以确保迁移攻击具有不可感知性。在现有公开数据集和骨骼动作识别模型上的实验结果表明,文章所提方法可以显著提高对抗攻击的可迁移性。

关键词: 骨骼动作识别, 对抗攻击, 深度学习, 迁移对抗攻击

Abstract:

Skeleton-based action recognition models are widely used in the fields of autonomous driving, behavior monitoring and action analysis. Some studies have shown that these models are vulnerable to adversarial attacks, raising security and privacy concerns. Although existing attack methods can achieve high attack success rates under white-box setting, these methods require the attacker to obtain the full-knowledge of the model, which is difficult to achieve in real-world scenarios, and has weak transferability under black-box attacks. In order to solve this problem, the article proposed an optimization gradient perception adversarial attack for skeleton-based action recognition named NAG-PA. This method prioritized estimating the gradient in the next iteration in each iteration of gradient calculation, and accumulated gradients at the updated position. At the same time, the current position was corrected to avoid getting stuck in local optima, thereby improving the transferability of adversarial samples. More importantly, the method proposed in the article used perceptual loss to ensure that transferable attacks were imperceptible. Results on common used datasets and state-of-the-art skeletal action recognition models show that the method proposed in the article can significantly improve the transferability against adversarial attacks.

Key words: skeleton action recognition, adversarial attack, deep learning, transferable adversarial attack

中图分类号: