信息网络安全 ›› 2024, Vol. 24 ›› Issue (3): 363-373.doi: 10.3969/j.issn.1671-1122.2024.03.003
收稿日期:
2024-01-05
出版日期:
2024-03-10
发布日期:
2024-04-03
通讯作者:
王敬童
E-mail:1871403326@qq.com
作者简介:
戚晗(1982—),男,黑龙江,副教授,博士,CCF会员,主要研究方向为移动云计算、网络安全、量子机器学习|王敬童(1999—),女,辽宁,硕士研究生,主要研究方向为量子机器学习与网络通信|ABDULLAH Gani(1959—),男,马来西亚,教授,博士,主要研究方向为云计算及数据科学|拱长青(1965—),男,内蒙古,教授,博士,主要研究方向为网络通信、云计算安全、量子信息和量子人工智能研究
基金资助:
QI Han1, WANG Jingtong1(), ABDULLAH Gani2, GONG Changqing1
Received:
2024-01-05
Online:
2024-03-10
Published:
2024-04-03
Contact:
WANG Jingtong
E-mail:1871403326@qq.com
摘要:
近年来,量子机器学习被证明与经典机器学习一样会被一个精心设计的微小扰动干扰从而造成识别准确率严重下降。目前增加模型对抗鲁棒性的方法主要有模型优化、数据优化和对抗训练。文章从模型优化角度出发,提出了一种新的方法,旨在通过将随机量子层与变分量子神经网络连接组成新的量子全连接层,与量子卷积层和量子池化层组成变分量子卷积神经网络(Variational Quantum Convolutional Neural Networks,VQCNN),来增强模型的对抗鲁棒性。文章在KDD CUP99数据集上对基于VQCNN的量子分类器进行了验证。实验结果表明,在快速梯度符号法(Fast Gradient Sign Method,FGSM)、零阶优化法(Zeroth-Order Optimization,ZOO)以及基于遗传算法的生成对抗样本的攻击下,文章提出的VQCNN模型准确率下降值分别为11.18%、15.21%和33.64%,与其它4种模型相比准确率下降值最小。证明该模型在对抗性攻击下具有更高的稳定性,其对抗鲁棒性更优秀。同时在面对基于梯度的攻击方法(FGSM和ZOO)时的准确率下降值更小,证明文章提出的VQCNN模型在面对此类攻击时更有效。
中图分类号:
戚晗, 王敬童, 拱长青. 基于随机量子层的变分量子卷积神经网络鲁棒性研究[J]. 信息网络安全, 2024, 24(3): 363-373.
QI Han, WANG Jingtong, ABDULLAH Gani, GONG Changqing. Robustness of Variational Quantum Convolutional Neural Networks Based on Random Quantum Layers[J]. Netinfo Security, 2024, 24(3): 363-373.
表2
5种模型的实验结果
模型 | 准确率 | 精确率 | 召回率 | F1值 | FPR | FNR | FAR | 训练时间/s |
---|---|---|---|---|---|---|---|---|
QNN | 97.20% | 97.21% | 99.55% | 98.35% | 6.85% | 1.36% | 4.11% | 1568 |
QCNN | 98.52% | 98.35% | 99.76% | 99.03% | 3.73% | 0.24% | 1.99% | 2110 |
VQNN | 95.94% | 98.30% | 96.27% | 97.26% | 4.63% | 0.82% | 2.73% | 2349 |
HQCNN | 97.50% | 99.64% | 97.30% | 98.41% | 5.68% | 1.27% | 3.48% | 1236 |
VQCNN | 98.68% | 100% | 93.33% | 96.55% | 5.34% | 0.67% | 3.33% | 2893 |
[1] |
ARUTE F, ARYA K, BABBUSH R, et al. Quantum Supremacy Using a Programmable Superconducting Processor[J]. Nature, 2019, 574: 505-510.
doi: 10.1038/s41586-019-1666-5 |
[2] |
JORDAN M I, MITCHELL T M. Machine Learning: Trends, Machine Learning: Trends, Perspectives, and Prospects[J]. Science, 2015, 349(6245): 255-260.
doi: 10.1126/science.aaa8415 pmid: 26185243 |
[3] | ZHOU L, WANG Shengtao, CHOI S, et al. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices[EB/OL]. (2020-06-24)[2023-12-05]. https://doi.org/10.1103/PhysRevX.10.021067. |
[4] |
LI Ya, TIAN Xinmei, SONG Mingli, et al. Multi-Task Proximal Support Vector Machine[J]. Pattern Recognition, 2015, 48(10): 3249-3257.
doi: 10.1016/j.patcog.2015.01.014 URL |
[5] | ZHOU Shangnan. Quantum Data Compression and Quantum Cross Entropy[EB/OL]. (2021-06-25)[2023-12-05]. https://ui.adsabs.harvard.edu/abs/2021arXiv210613823S. |
[6] |
CHEN Yiwei, PAN Yu, DONG Daoyi, et al. Quantum Language Model with Entanglement Embedding for Question Answering[J]. IEEE Transactions on Cybernetics, 2023, 53(6): 3467-3478.
doi: 10.1109/TCYB.2021.3131252 URL |
[7] |
BIAMONTE J, WITTEK P, PANCOTTI N. Quantum Machine Learning[J]. Nature, 2017, 549: 195-202.
doi: 10.1038/nature23474 URL |
[8] | AVRAMOULI M, SAVVAS I K, VASILAKI A, et al. Unlocking the Potential of Quantum Machine Learning to Advance Drug Discovery[EB/OL]. (2023-05-25)[2023-12-05]. https://doi.org/10.3390/electronics12112402. |
[9] | SCHUHMACHER J, MAZZOLA G, TACCHINO F, et al. Extending the Reach of Quantum Computing for Materials Science with Machine Learning Potentials[EB/OL]. (2022-11-17)[2023-12-05]. https://doi.org/10.1063/5.0099469. |
[10] |
CONG I, CHOI S, LUKIN M D. Quantum Convolutional Neural Networks[J]. NATURE PHYSICS, 2019, 15: 1273-1278.
doi: 10.1038/s41567-019-0648-8 |
[11] | HE Rui, DING Zeqing. Recognition of Micro Parts Based on Quantum Convolution Neural Network Algorithm[J]. Food & Machinery, 2021, 37(6): 120-125. |
何瑞, 丁泽庆. 基于量子卷积神经网络算法的微小零件识别[J]. 食品与机械, 2021, 37(6): 120-125. | |
[12] | PESAH A, CEREZO M, WANG S, et al. Absence of Barren Plateaus in Quantum Convolutional Neural Networks[EB/OL]. (2022-10-15)[2023-12-05]. https://link.aps.org/doi/10.1103/PhysRevX.11.041011. |
[13] | FAN Xingkui, LIU Guangzhe, WANG Haowen, et al. A New Model of Image Recognition Based on Quantum Convolutional Neural Network[J]. Journal of University of Electronic Science and Technology of China, 2022, 5: 642-650. |
范兴奎, 刘广哲, 王浩文, 等. 基于量子卷积神经网络的图像识别新模型[J]. 电子科技大学学报, 2022, 5: 642-650. | |
[14] | PRESKILL J. Quantum Computing in the NISQ Era and Beyond[EB/OL]. (2018-08-06)[2023-12-05]. http://dx.doi.org/10.22331/q-2018-08-06-79. |
[15] |
XIA Rongxin, KAIS S. Hybrid Quantum-Classical Neural Network for Calculating Ground State Energies of Molecules[J]. Entropy, 2020, 22(8): 828-840.
doi: 10.3390/e22080828 URL |
[16] | LIU Junhua, LIM K H, WOOD K L, et al. Hybrid Quantum-Classical Convolutional Neural Networks[EB/OL]. (2023-09-25)[2023-12-05]. https://doi.org/10.3389/fmars.2023.1158548. |
[17] | HUANG Fangyu, TAN Xiaoqing, HUANG Rui, et al. Variational Convolutional Neural Networks Classifiers[EB/OL]. (2022-08-13)[2023-12-05]. https://doi.org/10.1016/j.physa.2022.128067. |
[18] | WANG Aijuan, HU Jianglong, ZHANG Shiyue, et al. Shallow Hybrid Quantum-Classical Convolutional Neural Network Model for Image Classification[EB/OL]. (2023-05-09)[2023-12-05]. https://doi.org/10.1007/s11128-023-04217-5. |
[19] |
JEONG S G, DO Q V, HWANG H J, et al. Hybrid Quantum Convolutional Neural Networks for UWB Signal Classification[J]. IEEE ACCESS, 2023, 11: 113726-113739.
doi: 10.1109/ACCESS.2023.3323019 URL |
[20] | BOKHAN D, MASTIUKOVA A S, BOEV A S, et al. Multiclass Classification Using Quantum Convolutional Neural Networks with Hybrid Quantum-Classical Learning[EB/OL]. (2022-11-23)[2023-12-05]. http://dx.doi.org/10.3389/fphy.2022.1069985. |
[21] | YANG C H, QI Jun, CHEN S Y, et al. Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition[EB/OL]. (2021-02-12)[2023-12-05]. https://doi.org/10.1109/ICASSP39728.2021.9413453. |
[22] | OVALLE-MAGALLANES M, AVINA-CERVANTES J, CRUZ-ACEVES I, et al. Hybrid Classical-Quantum Convolutional Neural Network for Stenosis Detection in X-Ray Coronary Angiography[EB/OL]. (2022-03-01)[2023-12-05]. https://doi.org/10.1016/j.eswa.2021.116112. |
[23] | LU Sirui, DUAN Luming, DENG Dongling, et al. Quantum Adversarial Machine Learning[EB/OL]. (2020-08-06)[2023-12-05]. http://dx.doi.org/10.1103/PhysRevResearch.2.033212. |
[24] | HUANG Chenyi, ZHANG Shibin. Enhancing Adversarial Robustness of Quantum Neural Networks by Adding Noise Layers[EB/OL]. (2023-08-10)[2023-12-05]. https://dx.doi.org/10.1088/1367-2630/ace8b4. |
[25] | DU Yuxuan, HSIEH M H, LIU Tongliang, et al. Quantum Noise Protects Quantum Classi-Fiers against Adversaries[EB/OL]. (2021-05-27)[2023-12-05]. https://doi.org/10.1103/PhysRevResearch.3.023153. |
[26] | HU Ling, WU Shuhan, CAI Weizhou, et al. Quantum Generative Adversarial Learning in a Superconducting Quantum Circuit[EB/OL]. (2019-01-25)[2023-12-05]. https://www.science.org/doi/abs/10.1126/sciadv.aav2761. |
[27] | TSIPRAS D, SANTURKAR S, ENGSTROM L, et al. Robustness May Be at Odds with Accuracy[EB/OL]. (2019-09-09)[2023-12-05]. https://doi.org/10.48550/arXiv.1805.12152. |
[28] | ZHANG Chaoyun, XAVIER C P, PAUL P. Tiki-Taka: Attacking and Defending Deep Learning-Based Intrusion Detection Systems[J]. Association for Computing Machinery, 2020, 13: 27-39. |
[29] | WU Jiansheng, ZHANG Wenpeng, MA Yuan. Data Analysis And Study on KDD CUP99 Data Set[J]. Computer Applications and Software, 2014, 11: 321-325. |
吴建胜, 张文鹏, 马垣. KDD CUP99数据集的数据分析研究[J]. 计算机应用与软件, 2014, 11: 321-325. | |
[30] | GOODFELLOW L J, SCHLENS J, SZEGEDY C, et al. Explaining and Harnessing Adversarial Examples[EB/OL]. (2015-03-20)[2023-12-05]. https://doi.org/10.48550/arXiv.1412.6572. |
[31] | CHEN Pinyu, ZHANG Huan, SHARMA Y, et al. Zoo: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural Networks without Training Substitute Models[EB/OL]. (2017-08-14)[2023-12-05]. https://doi.org/10.1145/3128572.3140448. |
[32] |
BAI Zhixu, WANG Hengjun. Adversarial Example Generation Method Based on Improved Genetic Algorithm[J]. Computer Engineering, 2023, 49(5): 139-149.
doi: 10.19678/j.issn.1000-3428.0065260 |
白祉旭, 王衡军. 基于改进遗传算法的对抗样本生成方法[J]. 计算机工程, 2023, 49(5): 139-149.
doi: 10.19678/j.issn.1000-3428.0065260 |
|
[33] |
PAWLICKI M, CHORAS M, KOZIK R. Defending Network Intrusion Detection Systems against Adversarial Evasion Attacks[J]. Future Generation Computer Systems, 2020, 110: 148-154.
doi: 10.1016/j.future.2020.04.013 URL |
[34] | HUANG Shuiyuan, AN Wanjia, ZHANG Deshun, et al. Image Classification and Adversarial Robustness Analysis Based on Hybrid Quantum-Classical Convolutional Neural Network[EB/OL]. (2023-04-15)[2023-12-05]. https://doi.org/10.1016/j.optcom.2023.129287. |
[35] | SIM S, JOHNSON P D, ASPURU-GUZIK A. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms[EB/OL]. (2019-10-14)[2023-12-05]. https://doi.org/10.1002/qute.201900070. |
[36] |
MOUSTAFA N, SLAY J. The Evaluation of Network Anomaly Detection Systems: Statistical Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99 Data Set[J]. Information Security Journal: A Global Perspective, 2016, 25(1): 18-31.
doi: 10.1080/19393555.2015.1125974 URL |
[1] | 钟静, 方冰, 朱江. 基于稀疏矩阵结构的特征选择算法现状研究[J]. 信息网络安全, 2024, 24(3): 352-362. |
[2] | 刘峰, 江佳齐, 黄灏. 面向加密货币交易介质及过程的安全综述[J]. 信息网络安全, 2024, 24(3): 330-351. |
[3] | 许良晨, 孟昭逸, 黄文超, 熊焰. 面向程序可达性验证的数组处理循环压缩方法[J]. 信息网络安全, 2024, 24(3): 374-384. |
[4] | 杨杰超, 胡汉平, 帅燕, 邓宇昕. 基于时变互耦合双混沌系统的轻量级序列密码[J]. 信息网络安全, 2024, 24(3): 385-397. |
[5] | 杨志鹏, 刘代东, 袁军翼, 魏松杰. 基于自注意力机制的网络局域安全态势融合方法研究[J]. 信息网络安全, 2024, 24(3): 398-410. |
[6] | 江荣, 刘海天, 刘聪. 基于集成学习的无监督网络入侵检测方法[J]. 信息网络安全, 2024, 24(3): 411-426. |
[7] | 江魁, 卢橹帆, 苏耀阳, 聂伟. 基于Attention-GRU的SHDoS攻击检测研究[J]. 信息网络安全, 2024, 24(3): 427-437. |
[8] | 张新有, 孙峰, 冯力, 邢焕来. 基于多视图表征的虚假新闻检测[J]. 信息网络安全, 2024, 24(3): 438-448. |
[9] | 傅彦铭, 陆盛林, 陈嘉元, 覃华. 基于深度强化学习和隐私保护的群智感知动态任务分配策略[J]. 信息网络安全, 2024, 24(3): 449-461. |
[10] | 张强, 何俊江, 李汶珊, 李涛. 基于深度度量学习的异常流量检测方法[J]. 信息网络安全, 2024, 24(3): 462-472. |
[11] | 薛茗竹, 胡亮, 王明, 王峰. 基于联邦学习和区块链技术的TAP规则处理系统[J]. 信息网络安全, 2024, 24(3): 473-485. |
[12] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
[13] | 翟鹏, 何泾沙, 张昱. 物联网环境下基于SM9算法和区块链技术的身份认证方法[J]. 信息网络安全, 2024, 24(2): 179-187. |
[14] | 顾妍妍, 沈丽敏, 高晨旭, 朱婷. 车载网中高效安全的无证书聚合签名方案[J]. 信息网络安全, 2024, 24(2): 188-202. |
[15] | 赵耿, 马英杰, 董有恒. 混沌密码理论研究与应用新进展[J]. 信息网络安全, 2024, 24(2): 203-216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||