信息网络安全 ›› 2023, Vol. 23 ›› Issue (5): 11-21.doi: 10.3969/j.issn.1671-1122.2023.05.002
收稿日期:
2023-03-09
出版日期:
2023-05-10
发布日期:
2023-05-15
通讯作者:
王梅
E-mail:wangmeiz@sdu.edu.cn
作者简介:
李增鹏(1989—),男,山东,副研究员,博士,主要研究方向为同态加密与安全多方计算|王梅(1990—),女,山东,助理研究员,博士,主要研究方向为安全计算与身份认证|陈梦佳(2001—),女,山东,博士研究生,主要研究方向为安全计算与隐匿查询
基金资助:
LI Zengpeng, WANG Mei(), CHEN Mengjia
Received:
2023-03-09
Online:
2023-05-10
Published:
2023-05-15
Contact:
WANG Mei
E-mail:wangmeiz@sdu.edu.cn
摘要:
随着云计算模式的普及应用,对密文数据的安全外包计算的研究已是必然趋势,由此,潜在的密文数据的安全计算和隐私保护问题愈加受到业界和学界的关注。新形态伪随机函数(Pseudorandom Function,PRF)作为解决密文安全计算与检索的重要工具之一,已是当前密码学的研究热点。当前,以密文安全计算为目标,结合全同态加密(Fully Homomorphic Encryption,FHE)与格密码、门限密码、安全多方计算(Multiparty Computing,MPC)和PRF等密码学原语,对新形态伪随机函数的研究主要集中在三方面:1)格基限制隐藏的PRF可验证性研究;2)格基受限PRF适应性安全研究;3)格基多点隐私可穿刺PRF应用性研究。因此,文章从PRF的可验证性、安全性和应用性三方面,较为全面地介绍当前重要的研究成果。
中图分类号:
李增鹏, 王梅, 陈梦佳. 新形态伪随机函数研究[J]. 信息网络安全, 2023, 23(5): 11-21.
LI Zengpeng, WANG Mei, CHEN Mengjia. Research of New Forms of Pseudorandom Random Function[J]. Netinfo Security, 2023, 23(5): 11-21.
表2
cPRFs方案对比
方案 | 假设 | 工具 | 模型 | 功能 | 密钥数 | Eval.O | 备注 |
---|---|---|---|---|---|---|---|
文献[ | OWF | GGM | 标准 | puncture | N/A | N/A | |
BDDH | Pairing | ROM | left/right | multi | √ | ||
文献[ | OWF | GGM | 标准 | puncture | N/A | N/A | |
文献[ | OWF | GGM | 标准 | puncture | N/A | N/A | |
文献[ | LWE&1D-SIS | Lattice | 标准 | circuit | single | √ | key-hom |
文献[ | LWE | Lattice | 标准 | prefix-fixing | multi | √ | key-hom |
文献[ | L-power DDH | Lattice | 标准 | sub-match | single | × | |
Lattice | 标准 | sub-match | single | × | |||
文献[ | DDH | Lattice | 标准 | sub-match | single | × |
表3
受限伪随机函数的密钥实例
受限伪随机函数 | 相关研究 | 密钥 |
---|---|---|
prefix-constrained PRF | 文献[ | keys for sets |
bit-fixing PRF | 文献[ | keys for sets defined by |
circuit-constrained PRF | 文献[ | keys defined by circuit C |
表4
隐私受限的伪随机函数对比
方案 | 假设 | 工具 | 模型 | 功能 | 密钥数 | Eval.O | 备注 |
---|---|---|---|---|---|---|---|
文献[4] 方案 | OWF | GGM | 标准 | puncture | N/A | N/A | |
文献[ | iO | Obf | 标准 | puncture | multi | √ | programmable |
bit-fixing | multi | √ | |||||
文献[ | LWE& 1D-SIS | Lattice | 标准 | puncture | N/A | N/A | |
文献[ | LWE | Lattice | 标准 | bit-fixing | single | √ | |
NC1 | single | √ | |||||
文献[ | LWE | Lattice | 标准 | circuit | single | √ | |
文献[ | LWE | Lattice | 标准 | circuit | single | √ | programmable |
文献[ | DDH | Group | 标准 | bit-fixing | single | √ |
[1] |
WANG Xiaoyun, LIU Mingjie. Survey of Lattice-Based Cryptography[J]. Journal of Cryptologic Research, 2014, 1(1): 13-27.
doi: 10.13868/j.cnki.jcr.000002 |
王小云, 刘明洁. 格密码学研究[J]. 密码学报, 2014, 1(1): 13-27.
doi: 10.13868/j.cnki.jcr.000002 |
|
[2] | REGEV O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[J]. Journal of the ACM (JACM), 2009, 56(6): 1-40. |
[3] | BONEH D, WATERS B. Constrained Pseudorandom Functions and Their Applications[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2013: 280-300. |
[4] | KIAYIAS A, PAPADOPPULOS S, TRIANDOPOULOS N, et al. Delegatable Pseudorandom Functions and Applications[C]// ACM. Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security. New York: ACM, 2013: 669-684. |
[5] | BOYLE E, GOLDWASSER S, IVAN I. Functional Signatures and Pseudorandom Functions[C]// Springer. International Workshop on Public Key Cryptography. Berlin:Springer, 2014: 501-519. |
[6] | BONEH D, LEWI K, MONTGOMERY H, et al. Key Homomorphic PRFs and Their Applications[C]// Springer. Annual Cryptology Conference. Berlin:Springer, 2013: 410-428. |
[7] | GENTRY C. Fully Homomorphic Encryption Using Ideal Lattices[C]// ACM. Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. New York: ACM, 2009: 169-178. |
[8] |
BRAKERSKI Z, VAIKUNTANATHAN V. Efficient Fully Homomorphic Encryption from (Standard) LWE[J]. SIAM Journal on Control and Optimization, 2014, 43(2): 831-871.
doi: 10.1137/S0363012902409568 URL |
[9] | BRAKERSKI Z, VAIKUNTANATHAN V. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages[C]// Springer. Annual Cryptology Conference. Berlin:Springer, 2011: 505-524. |
BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V. (Leveled) Fully Homomorphic Encryption Without Bootstrapping[J]. ACM Transactions on Computation Theory (TOCT), 2014, 6(3): 1-36. | |
[11] | GENTRY C, SAHAI A, WATERS B. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based[C]// Springer. Annual Cryptology Conference. Berlin:Springer, 2013: 75-92. |
[12] | BEN-EFRAIM A, LINDELL Y, OMRI E. Efficient Scalable Constant-Round MPC via Garbled Circuits[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2017: 471-498. |
[13] | BOGDANOV A, ROSEN A. Pseudorandom Functions: Three Decades Later[C]// Springer. Tutorials on the Foundations of Cryptography. Berlin:Springer, 2017: 79-158. |
[14] | BANERJEE A, PEIKERT C, ROSEN A. Pseudorandom Functions and Lattices[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2012: 719-737. |
[15] | BANERJEE A, PEIKERT C. New and Improved Key-Homomorphic Pseudorandom Functions[C]// Springer. Annual Cryptology Conference. Berlin:Springer, 2014: 353-370. |
[16] | SAHAI A, WATERS B. How to Use Indistinguishability Obfuscation:Deniable Encryption, and More[C]// ACM. Proceedings of the 46th Annual ACM Symposium on Theory of Computing. New York: ACM, 2014: 475-484. |
[17] | BONEH D, KIM S, MONTGOMERY H. Private Puncturable PRFs from Standard Lattice Assumptions[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2017: 415-445. |
[18] | CANETTI R, CHEN Yilei. Constraint-Hiding Constrained PRFs for NC1 from LWE[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2017: 446-476. |
[19] | BONEH D, LEWI K, WU D J. Constraining Pseudorandom Functions Privately[C]// Springer. IACR International Workshop on Public Key Cryptography. Berlin:Springer, 2017: 494-524. |
[20] | BONEH D, KIM S, WU D J. Constrained Keys for Invertible Pseudorandom Functions[C]// Springer. Theory of Cryptography Conference. Beilin:Springer, 2017: 237-263. |
[21] | COHEN A, HOLMGREN J, NISHIMAKI R, et al. Watermarking Cryptographic Capabilities[C]// ACM. Proceedings of the 48th Annual ACM Symposium on Theory of Computing. New York: ACM, 2016: 1115-1127. |
[22] | KIM S, WU D J. Watermarking Cryptographic Functionalities from Standard Lattice Assumptions[C]// Springer. Annual International Cryptology Conference. Berlin:Springer, 2017: 503-536. |
[23] | YAMADA S. Asymptotically Compact Adaptively Secure Lattice IBEs and Verifiable Random Functions via Generalized Partitioning Techniques[C]// Springer. Annual International Cryptology Conference. Berlin:Springer, 2017: 161-193. |
[24] | FUCHSBAUER G. Constrained Verifiable Random Functions[C]// International Conference on Security and Cryptography for Networks. Berlin:Springer, 2014: 95-114. |
[25] | CHANDRAN N, RAGHURAMAN S, VINAYAGAMURTHY D. Constrained Pseudorandom Functions: Verifiable and Delegatable[EB/OL]. (2014-05-22)[2023-02-15]. https://eprint.iacr.org/2014/522. |
[26] | COHEN A, GOLDWASSER S, VAIKUNTANATHAN V. Aggregate Pseudorandom Functions and Connections to Learning[C]// Theory of Cryptography Conference. Berlin:Springer, 2015: 61-89. |
[27] | ZHANDRY M. How to Avoid Obfuscation Using Witness PRFs[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2016: 421-448. |
[28] | BRAKERSKI Z, VAIKUNTANATHAN V. Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2015: 1-30. |
[29] | BANERJEE A, FUCHSBAUER G, PEIKERT C, et al. Key-Homomorphic Constrained Pseudorandom Functions[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2015: 31-60. |
[30] | FUCHSBAUER G, KONSTANTINOV M, PIETRZAK K, et al. Adaptive Security of Constrained PRFs[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2014: 82-101. |
[31] | HOHENBERGER S, KOPPULA V, WATERS B. Adaptively Secure Puncturable Pseudorandom Functions in the Standard Model[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2015: 79-102. |
[32] | DESHPANDE A, KOPPULA V, WATERS B. Constrained Pseudorandom Functions for Unconstrained Inputs[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2016: 124-153. |
[33] | BRAKERSKI Z, TSABARY R, VAIKUNTANATHAN V, et al. Private Constrained PRFs (and More) from LWE[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2017: 264-302. |
[34] | PEIKERT C, SHIEHIAN S. Privately Constraining and Programming PRFs, the LWE Way[C]// Springer. IACR International Workshop on Public Key Cryptography. Berlin:Springer, 2018: 675-701. |
[35] | ATTRAPADUNG N, MATSUDA T, NISHIMAKI R, et al. Constrained PRFs for NC1 in Traditional Groups. (from CRYPTO 2018)[J]. Cryptology ePrint Archive, 2018, 118(212): 543-574. |
[36] |
BITANSKY N. Verifiable Random Functions from Non-Interactive Witness-Indistinguishable Proofs[J]. Journal of Cryptology, 2020, 33(2): 459-493.
doi: 10.1007/s00145-019-09331-1 |
[37] | GOYAL R, HOHENBERGER S, KOPPULA V, et al. A Generic Approach to Constructing and Proving Verifiable Random Functions[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2017: 537-566. |
[38] | NAOR M, PINKAS B, REINGOLD O. Distributed Pseudo-Random Functions and KDCs[C]// Springer. International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 1999: 327-346. |
[39] | GORBUNOV S, VAIKUNTANATHAN V, WEE H. Attribute-Based Encryption for Circuits[J]. Journal of the ACM (JACM), 2015, 62(6): 1-33. |
[40] | BONEH D, GENTRY C, GORBUNOV S, et al. Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2014: 533-556. |
[41] | BARAK B, GOLDREICH O, IMPAGLIAZZO R, et al. On the (Im) possibility of Obfuscating Programs[C]// Springer. Annual International Cryptology Conference. Berlin:Springer, 2001: 1-18. |
[42] | BONEH D, SILVERBERG A. Applications of Multilinear Forms to Cryptography[J]. Contemporary Mathematics, 2003, 324(1): 71-90. |
[43] | GENTRY C, GORBUNOV S, HALEVI S. Graph-Induced Multilinear Maps from Lattices[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2015: 498-527. |
[44] | MICALI S, RABIN M, VADHAN S. Verifiable Random Functions[C]// IEEE. 40th Annual Symposium on Foundations of Computer Science. New York: IEEE, 1999: 120-130. |
[45] | DENG Yi, LIN Dongdai. Instance-Dependent Verifiable Random Functions and Their Application to Simultaneous Resettability[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2007: 148-168. |
[46] | BRAKERSKI Z, GOLDWASSER S, ROTHBLUM G N, et al. Weak Verifiable Random Functions[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2009: 558-576. |
[47] | FIORE D, SCHRODER D. Uniqueness is a Different Story: Impossibility of Verifiable Random Functions from Trapdoor Permutations[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2012: 636-653. |
[48] | KUROSAWA K, NOJIMA R, PHONG L T. Relation Between Verifiable Random Functions and Convertible Undeniable Signatures, and New Constructions[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(1): 215-224. |
[49] | KUCHTA V, MANULIS M. Unique Aggregate Signatures with Applications to Distributed Verifiable Random Functions[C]// Springer. International Conference on Cryptology and Network Security. Berlin:Springer, 2013: 251-270. |
[50] | BADRINARAYANAN S, GOYAL V, JAIN A, et al. A Note on VRFs from Verifiable Functional Encryption[EB/OL]. (2017-09-17)[2023-02-15]. https://www.xueshufan.com/publication/2899823642. |
[51] | LYSYANSKAYA A. Unique Signatures and Verifiable Random Functions from the DH-DDH Separation[C]// Springer. Annual International Cryptology Conference. Berlin:Springer, 2002: 597-612. |
[52] | DODIS Y. Efficient Construction of (Distributed) Verifiable Random Functions[C]// Springer. Proceedings of the 6th International Workshop on Public Key Cryptography. Berlin:Springer, 2003: 1-17. |
[53] | DODIS Y, YAMPAMPOLSKIY A. A Verifiable Random Function with Short Proofs and Keys[C]// Springer. International Workshop on Public Key Cryptography. Berlin:Springer, 2005: 416-431. |
[54] | JAGER T. Verifiable Random Functions from Weaker Assumptions[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2015: 121-143. |
[55] | HOFHEINZ D, JAGER T. Verifiable Random Functions from Standard Assumptions[C]// Springer. Theory of Cryptography Conference. Berlin:Springer, 2016: 336-362. |
[56] | LIANG Bei, LIHongda, CHANGJinyong. Constrained Verifiable Random Functions from Indistinguishability Obfuscation[C]// Springer. International Conference on Provable Security. Berlin:Springer, 2015: 43-60. |
[57] | LIANG Bei, LIHongda, CHANGJinyong. Verifiable Random Functions from (Leveled) Multilinear Maps[C]// Springer. International Conference on Cryptology and Network Security. Berlin:Springer, 2015: 129-143. |
[58] | MICALI S, REYZIN L. Soundness in the Public-Key Model[C]// Springer. Annual International Cryptology Conference. Berlin:Springer, 2001: 542-565. |
[59] | LISKOV M. Updatable Zero-Knowledge Databases[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2005: 174-198. |
[60] | AU M H, SUSILO W, MU Yi. Practical Compact E-Cash[C]// Springer. Australasian Conference on Information Security and Privacy. Berlin:Springer, 2007: 431-445. |
[61] | BELENKIY M, CHASE M, KOHLWEISS M, et al. Compact E-Cash and Simulatable VRFs Revisited[C]// Springer. International Conference on Pairing-Based Cryptography. Berlin:Springer, 2009: 114-131. |
[62] | LIBERT B, LING S, NGUYEN K, et al. Zero-Knowledge Arguments for Lattice-Based PRFs and Applications to E-Cash[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2017: 304-335. |
[63] | FAN Lei, ZHOU Hongsheng. A Scalable Proof-of-Stake Blockchain in the Open Setting (or, How to Mimic Nakamoto’s Design via Proof-of-Stake)[EB/OL]. (2017-06-05)[2023-02-15]. https://eprint.iacr.org/2017/656.pdf. |
[64] | BONEH D, BOYEN X. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles[C]// Springer. International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2004: 223-238. |
[65] | CHATTERJEE S, KOBLITZ N, MENEZES A, et al. Another Look at Tightness II: Practical Issues in Cryptography[C]// Springer. International Conference on Cryptology in Malaysia. Berlin:Springer, 2016: 21-55. |
[66] | HOFHEINZ D, KAMATH A, KOPPULA V, et al. Adaptively Secure Constrained Pseudorandom Functions[C]// Springer. International Conference on Financial Cryptography and Data Security. Berlin:Springer, 2019: 357-376. |
[67] |
NAOR M, REINGOLD O. Number-Theoretic Constructions of Efficient Pseudo-Random Functions[J]. Journal of the ACM (JACM), 2004, 51(2): 231-262.
doi: 10.1145/972639.972643 URL |
[68] | HOFHEINZ D. Fully Secure Constrained Pseudorandom Functions Using Random Oracles[J]. Cryptology ePrint Archive, 2014, 9: 1-24. |
[69] | GORBUNOV S, VAIKUNTANATHAN V, WEE H. Predicate Encryption for Circuits from LWE[C]// Springer. Annual Cryptology Conference. Berlin:Springer, 2015: 503-523. |
[70] | GORBUNOV S, VAIKUNTANATHAN V, WICHS D. Leveled Fully Homomorphic Signatures from Standard lattices[C]// ACM. Proceedings of the 47th Annual ACM Symposium on Theory of Computing. New York: ACM, 2015: 469-477. |
[71] | BONEH D, ZHANDRY M. Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation[C]// Springer. International Cryptology Conference. Berlin:Springer, 2017: 1233-1285. |
[1] | 李宁波, 周昊楠, 车小亮, 杨晓元. 云环境下基于多密钥全同态加密的定向解密协议设计[J]. 信息网络安全, 2020, 20(6): 10-16. |
[2] | 周昊楠, 李宁波, 车小亮, 杨晓元. 基于素数幂次阶分圆多项式环的多密钥全同态方案[J]. 信息网络安全, 2020, 20(5): 83-87. |
[3] | 唐春明, 林旭慧. 隐私保护集合交集计算协议[J]. 信息网络安全, 2020, 20(1): 9-15. |
[4] | 刘文超, 潘峰, 杨晓元, 周潭平. 基于GPU的全同态加密软件库调试与分析[J]. 信息网络安全, 2019, 19(6): 76-83. |
[5] | 宋新霞, 马佳敏, 陈智罡, 陈克非. 基于SEAL的虹膜特征密文认证系统[J]. 信息网络安全, 2018, 18(12): 15-22. |
[6] | 陈付龙, 张紫阳, 王涛春, 谢冬. 一种基于联络信号的物联网安全身份认证方法[J]. 信息网络安全, 2018, 18(11): 40-48. |
[7] | 王嵘冰, 李雅囡, 徐红艳, 冯勇. 适合云服务环境的实数全同态加密方案[J]. 信息网络安全, 2018, 18(11): 49-56. |
[8] | 李增鹏, 马春光, 张磊, 张雯雯. 两类基于容错学习的多比特格公钥加密方案[J]. 信息网络安全, 2017, 17(10): 1-7. |
[9] | 李增鹏, 邹岩, 张磊, 马春光. 一种基于全同态加密的智能电网数据交换隐私保护方案[J]. 信息网络安全, 2016, 16(3): 1-7. |
[10] | 王志刚, 马春光, 史晓倩. 基于Binary LWE的全同态加密方案研究[J]. 信息网络安全, 2015, 15(7): 41-50. |
[11] | 吕海峰, 丁勇, 代洪艳, 李新国. LWE上的全同态加密方案研究[J]. 信息网络安全, 2015, 15(1): 32-38. |
[12] | . 可计算密文加密体制研究[J]. , 2014, 14(5): 78-. |
[13] | 陈莉;林柏钢. 基于分布式线性方程组求解的安全多方计算协议[J]. , 2013, 13(9): 0-0. |
[14] | 刘镪;唐春明;胡杏;张永强. 多租赁用户模型下有效安全外包计算[J]. , 2013, 13(9): 0-0. |
[15] | 封化民;孙轶茹;孙莹. 基于身份认证加密的匿名私钥共享方案[J]. , 2013, 13(11): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||