信息网络安全 ›› 2021, Vol. 21 ›› Issue (11): 48-57.doi: 10.3969/j.issn.1671-1122.2021.11.006

• 技术研究 • 上一篇    下一篇

一种基于条件生成对抗网络的图像隐写方法研究与实现

雷雨(), 刘佳, 李军, 柯彦   

  1. 武警工程大学密码工程学院,西安 710086
  • 收稿日期:2020-09-28 出版日期:2021-11-10 发布日期:2021-11-24
  • 通讯作者: 雷雨 E-mail:ly1a2b3c@163.com
  • 作者简介:雷雨(1987—),男,湖北,讲师,硕士,主要研究方向为图像隐写与分析|刘佳(1982—),男,河南,副教授,博士,主要研究方向为信息隐藏|李军(1987—),男,湖南,讲师,硕士,主要研究方向为图像隐写与分析|柯彦(1991—),男,河南,博士研究生,主要研究方向为可逆信息隐藏
  • 基金资助:
    国家自然科学基金(61872384)

Research and Implementation of a Image Steganography Method Based on Conditional Generative Adversarial Networks

LEI Yu(), LIU Jia, LI Jun, KE Yan   

  1. College of Cryptographic Engineering, Engineering University of PAP, Xi’an 710086, China
  • Received:2020-09-28 Online:2021-11-10 Published:2021-11-24
  • Contact: LEI Yu E-mail:ly1a2b3c@163.com

摘要:

通过纹理图像合成实现隐写是一类常见的载体合成隐写方法,但纹理图像不具有语义特征,这类方法容易在多次传输后引起攻击者注意。生成对抗网络(Generative Adversarial Networks,GAN)利用博弈策略让生成器和判别器对抗,理论上训练达到最优的生成器能使生成样本的分布与真实数据相同。因此,在理想情况下用GAN实现合成隐写能构造出自然的含密图像。目前基于GAN的载体合成图像隐写方法的问题之一是无法控制生成图像的内容。针对该问题,文章提出了一种基于条件生成对抗网络的图像隐写方法,该方法用随机噪声和条件信息的组合作为隐空间的表示来训练生成器,使生成图像受条件信息控制;用生成图像和条件信息的组合作为概率空间的表示来训练提取器,使提取噪声与驱动噪声一致。实验结果表明,该方法可完成含密图像生成与消息提取的功能,在生成含密图像时能利用条件信息控制图像内容的生成,同时保证生成的含密图像质量和消息提取正确率不降低。

关键词: 生成对抗网络, 条件生成对抗网络, 图像隐写

Abstract:

Steganography by texture image synthesis was a kind of common carrier synthesis steganography method. However, the texture image did not have semantic features, so this kind of method was easy to attract the attention of attackers after multiple transmission. The generative adversarial networks used game strategy to make the generator confront the discriminator. In theory, the generator with the best training could make the distribution of the generated samples the same as the real data. In ideal conditions, using GAN to realize synthesis steganography could construct a natural image. One of the problems of the image synthesis steganography based on GAN was that it couldn’t control the content of the generated image. To solve this problem, this paper proposed an image steganography method based on conditional generative adversarial networks. In this method, the combination of random noise and condition information was used as the representation of hidden space to train the generator, so that the generated image was controlled by condition information. The combination of generated image and condition information was used as the representation of probability space to train the extractor, so that the extracted noise was consistent with the driving noise. The experimental results showed that this method could complete the function of generating the image and extracting the message. The outstanding feature was that it could use the condition information to control the content of the image. At the same time, the image quality and accuracy rate of the message extraction were close to the method in the comparison.

Key words: generative adversarial networks, conditional generative adversarial networks, image steganography

中图分类号: