信息网络安全 ›› 2021, Vol. 21 ›› Issue (8): 62-69.doi: 10.3969/j.issn.1671-1122.2021.08.008
收稿日期:
2021-04-19
出版日期:
2021-08-10
发布日期:
2021-09-01
通讯作者:
李志慧
E-mail:lizhihui@snnu.edu.cn
基金资助:
LIU Lu, LI Zhihui(), LU Dianjun, YAN Chenhong
Received:
2021-04-19
Online:
2021-08-10
Published:
2021-09-01
Contact:
LI Zhihui
E-mail:lizhihui@snnu.edu.cn
摘要:
文章基于线性纠错码提出了一个具有$\varepsilon $安全性的可识别作弊的量子秘密共享方案。在该方案中,秘密被正交阵列的列标和某行中的两个元素唯一决定。其中正交阵列的列标可通过非对称二元多项式在经典信道恢复,而某行中的两个元素基于线性纠错码在量子信道部分恢复。该方案不仅具有作弊者可识别和身份验证的功能,而且可实现秘密的双重加密。安全性分析表明,该协议可抵抗拦截重发攻击和纠缠测量攻击。
中图分类号:
刘璐, 李志慧, 芦殿军, 闫晨红. 基于线性码的量子秘密共享方案[J]. 信息网络安全, 2021, 21(8): 62-69.
LIU Lu, LI Zhihui, LU Dianjun, YAN Chenhong. Quantum Secret Sharing Scheme Based on Linear Codes[J]. Netinfo Security, 2021, 21(8): 62-69.
[1] |
HILLERY M, NEK V, ANDRE B. Quantum Secret Sharing[J]. Physical Review A, 1999, 59(3):1829-1834.
doi: 10.1103/PhysRevA.59.1829 URL |
[2] |
GUO Pingguo, GUO Guangcan. Quantum Secret Sharing without Entanglement[J]. Physics Letters A. 2003, 310(4):247-251.
doi: 10.1016/S0375-9601(03)00074-4 URL |
[3] |
TAVAKOLI A, HERBAUTS I, ZUKOWSKI M, et al. Secret Sharing with a Single D-level Quantum System[J]. Physical Review A, 2015, 92(3):030302.
doi: 10.1103/PhysRevA.92.030302 URL |
[4] | ZHANG Zhanjun, MAN Zhongxiao. Multiparty Quantum Secret Sharing Based on Entanglement Swapping[J]. Physical Review A, 2004, 72(2):1-6. |
[5] |
SHI Ronghua, SU Qian, GUO Yin, et al. Quantum Secret Sharing Based on Chinese Remainder Theorem[J]. Communications in Theoretical Physics, 2011, 55(4):573-578.
doi: 10.1088/0253-6102/55/4/08 URL |
[6] | CREPEAU C, GOTTESMAN D, SMITH A. Secure Multi-party Quantum Computation[C]//ACM. 34th Annual ACM Symposium on Theory of Computing. May 19-21, 2002, Montréal, Québec, Canada. New York: ACM. 2002: 643-652. |
[7] |
YANG Yuguang, TENG Yiwei, CHAI Haiping, et al. Verifiable Quantum ( k, n )-threshold Secret Key Sharing[J]. International Journal of Theoretical Physics, 2011, 50(3):792-798.
doi: 10.1007/s10773-010-0616-7 URL |
[8] |
LU Changbin, MIAO Fuyou, HOU Junpeng, et al. Verifiable Threshold Quantum Secret Sharing with Sequential Communication[J]. Quantum Information Processing, 2018, 17(11):1-13.
doi: 10.1007/s11128-017-1770-0 URL |
[9] |
SHAMIR A. How to Share a Secret[J]. Communications of the ACM, 1979, 22(11):612-613.
doi: 10.1145/359168.359176 URL |
[10] |
QIN Huawang, DAI Yuewei. Verifiable (t, n) Threshold Quantum Secret Sharing Using D-dimensional Bell State[J]. Information Processing Letters, 2016, 116(5):351-355.
doi: 10.1016/j.ipl.2016.01.005 URL |
[11] |
MCELIECE R J, SARWATE D V. On Sharing Secrets and Reed-solomon Codes[J]. Communications of the Acm, 1981, 24(9):583-584.
doi: 10.1145/358746.358762 URL |
[12] | NIEDERREITER H. Knapsack-type Cryptosystems and Algebraic Coding Theory[J]. Problems Control Information Theory, 1986, 15(2):159-166. |
[13] | ARKADII S. Algebra for Applications Cryptography, Secret Sharing, Error-correcting, Fingerprinting, Compression[M]. Switzerland: Springer International Publishing. 2020. |
[14] | GENNARO R, ISHAI Y, KUSHILEVITZ E, et al. The Round Complexity of Verifiable Secret Sharing and Secure Multicast[EB/OL]. https://core.ac.uk/display/24607151 , 2021-03-12. |
[15] |
KATZ J, KOO C Y, KUMARESAN R. Improving The Round Complexity of VSS in Point-to-point Networks[J]. Information and Computation, 2009, 207(8):889-899.
doi: 10.1016/j.ic.2009.03.007 URL |
[16] |
BAI Chenming, LI Zhihui, LIU Chengji, et al. Quantum Secret Sharing Using Orthogonal Multiqudit Entangled States[J]. Quantum Information Processing, 2017, 16(12):304-316.
doi: 10.1007/s11128-017-1739-z URL |
[17] | IVONOVIC I D. Geometrical Description of Quantal State Determination[J]. Journal of Physics a General Physics, 1981, 14(12):3241-3245. |
[18] |
WOOTTERS W K, FIELDS B D. Optimal State-determination by Mutually Unbiased Measurements[J]. Annals of Physics, 1989, 191(2):363-381.
doi: 10.1016/0003-4916(89)90322-9 URL |
[19] | KUROSAWA K, OBANA S, OGATA W. T-cheater Identifiable (k, n) Secret Sharing Schemes[EB/OL]. https://link.springer.com/chapter/10.1007/3-540-44750-4_33#citeas , 2021-03-15. |
[20] | LOEPP S, WOOTTERS W K. Protecting Information: From Classical Error Correction to Quantum Cryptography[M]. New York: Cambridge University Press, 2006. |
[21] | COLBOURN C J, DINITZ J H. The CRC Handbook of Combinatorial Designs[M]. Boca Raton, FL: CRC Press, 2007. |
[22] | BOSE R C, SHRIKHANDE S S, PARKER E T. Further Results on The Construction of Mutually Orthogonal Latain Squares and the Falsity of Euler’s Conjecture[EB/OL]. https://www.ixueshu.com/document/f345392897e4bf4e318947a18e7f9386.html , 2021-03-21. |
[23] | BUSH K A. A Generalization of the Theorem Due to MacNeish[J]. Annalsof Math. Stat. 1952, 23(5):293-295. |
[24] | KARIMIPOUR V, ASOUDEH M. Quantum Secret Sharing and Random Hopping; Using Single States Instead of Entanglement[J]. Physical Review A, 2015, 92(3):1-5. |
[25] |
GAO Fei, WEN Qiaoyan, ZHU Fuchen. Comment on: “Quantum exam”[Phys. Lett. A 350(2006)174][J]. Physics Letters A, 2007, 360(6):748-750.
doi: 10.1016/j.physleta.2006.08.016 URL |
[26] |
QIN Suanjuan, GAO Fei, WEN Qiaoyan, et al. Improving the Security of Multiparty Quantum Secret Sharing Against an Attack with a Fake Signal[J]. Physics Letters A, 2006, 357(2):101-103.
doi: 10.1016/j.physleta.2006.04.030 URL |
[1] | 刘晓芬, 陈晓峰, 连桂仁, 林崧. 基于d级单粒子的可认证多方量子秘密共享协议[J]. 信息网络安全, 2020, 20(3): 51-55. |
[2] | 刘成基, 李志慧, 司萌萌, 白晨明. 基于局域区分的六粒子正交纠缠态的量子秘密共享方案[J]. 信息网络安全, 2018, 18(4): 56-64. |
[3] | 程资, 靳俐荣, 石金晶. 基于RS码生成机制的(k,n)门限量子秘密共享方案[J]. 信息网络安全, 2016, 16(4): 44-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||