信息网络安全 ›› 2018, Vol. 18 ›› Issue (12): 1-7.doi: 10.3969/j.issn.1671-1122.2018.12.001

• 等级保护 •    下一篇

基于二分图模型的主机行为分析

王劲松1,2,3(), 南慧荣1,2,3, 张洪豪1,2,3   

  1. 1. 天津理工大学计算机科学与工程学院,天津 300384
    2. 计算机病毒防治技术国家工程实验室,天津 300457
    3. 智能计算及软件新技术天津市重点实验室,天津 300384
  • 收稿日期:2018-01-11 出版日期:2018-12-20 发布日期:2020-05-11
  • 作者简介:

    作者简介:王劲松(1970—),男,天津,教授,博士,主要研究方向为信息安全、计算机网络;南慧荣(1992—),男,山西,硕士研究生,主要研究方向为信息安全、大数据;张洪豪(1984—),男,湖北,工程师,硕士,主要研究方向为网络安全、未来互联网。

  • 基金资助:
    国家自然科学基金[61272450]

Host Behavior Analysis Based on Bipartite Graph Model

Jinsong WANG1,2,3(), Huirong NAN1,2,3, Honghao ZHANG1,2,3   

  1. 1. School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
    2. National Engineering Laboratory for Computer Virus Prevention and Control Technology, Tianjin 300457, China
    3. Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin 300384, China
  • Received:2018-01-11 Online:2018-12-20 Published:2020-05-11

摘要:

近年来,随着网络规模的不断增长、网络应用的多样化、加密数据传输技术的逐步成熟,终端主机行为的分析也越来越复杂。文章提出一种基于图模型的主机行为分析方法,利用社区检测来发现具有相似行为的终端主机,并通过引入Spark GraphX技术使得该方法具备可扩展性和实用性。实验结果表明,该方法可以有效分析具有相似行为的主机群体,降低了大规模网络异常检测的复杂度。

关键词: 图模型, NetFlow, 分布式计算, 网络安全, 社区检测

Abstract:

In recent years, with the continuous increase of the network scale, diversification of network applications and the gradual maturity of the encrypted data transmission technology, the analysis of the terminal host behavior have become more and more complicated. This paper presents a graph-based approach that uses community detection to discover end hosts with similar behavior. And the approach are scalable and practical by introducing Spark GraphX technology. The experimental results show that this method has strong validity and reference in the data analysis based on NetFlow, and can be referenced for large-scale network analysis.

Key words: graph model, NetFlow, distributed computing, network security, community detection

中图分类号: