信息网络安全 ›› 2015, Vol. 15 ›› Issue (8): 20-25.doi: 10.3969/j.issn.1671-1122.2015.08.004

• 技术研究 • 上一篇    下一篇

基于平衡二叉决策树SVM算法的物联网安全研究

张晓惠1(), 林柏钢2   

  1. 1.福州大学至诚学院计算机工程系,福建福州 350002
    2.网络系统信息安全福建省高校重点实验室,福建福州 350108
  • 收稿日期:2015-07-03 出版日期:2015-08-01 发布日期:2015-08-21
  • 作者简介:

    张晓惠(1984-),女,福建,讲师,硕士,主要研究方向:信息安全、智能算法;林柏钢(1953-),男,福建,博士生导师,教授,主要研究方向:网络与信息安全、编码与密码。

  • 基金资助:
    国家自然科学基金[61075022];福建省教育厅科技项目[2014JB14224]

Research on Internet of Things Security Based on Support Vector Machines with Balanced Binary Decision Tree

ZHANG Xiao-hui1(), LIN Bo-gang2   

  1. 1. Department of Computer Engineering, Zhicheng College of Fuzhou University, Fuzhou Fujian 350002, China
    2. Key Lab of Information Security of Network System in Fujian Province, Fuzhou Fujian 350108, China
  • Received:2015-07-03 Online:2015-08-01 Published:2015-08-21

摘要:

物联网是继计算机、互联网和移动通信之后的又一次信息产业革命。目前,物联网已经被正式列为国家重点发展的战略性新兴产业之一,其应用范围几乎覆盖了各行各业。物联网中存在的网络入侵等安全问题日趋突出,在大数据背景下,文章提出一种适用于物联网环境的入侵检测模型。该模型把物联网中的入侵检测分为数据预处理、特征提取和数据分类3部分。数据预处理主要解决数据的归一化和冗余数据等问题;特征提取的主要目标是降维,以减少数据分类的时间;数据分类中引入平衡二叉决策树支持向量机(SVM)多分类算法,选用BDT-SVM算法对网络入侵数据进行训练和检测。实验表明,选用BDT-SVM多分类算法可以提高入侵检测系统的精度;通过特征提取,在保证精度的前提下,减少了检测时间。

关键词: 入侵检测, 平衡二叉决策树, 支持向量机, 物联网安全

Abstract:

The Internet of Things (IoT) is another information industry revolution after the computer, the Internet and the mobile communications. At present, IoT has been officially listed as one of the national strategic emerging industries, and its application range covers almost all areas. Secure problems such as network intrusion in the IoT art prominent increasingly. In the big data context, this paper proposes an intrusion detection model that is suitable for IoT which divides the intrusion detection procedure into three parts, which are data preprocessing, features extraction and data classification. Data normalization and data redundancy reduction are solved in the data preprocessing. The main goal of features extraction is to reduce the dimension and thus to reduce the time of data classification. Support vector machine with balanced binary decision tree algorithm that is named BDT-SVM is introduced in the data classification for training and testing the network intrusion data. Experimental results show that it can improve the accuracy of intrusion detection system by using the BDT-SVM algorithm and reduce the detection time with features extraction in the premise of ensuring accuracy.

Key words: intrusion detection, balanced binary decision tree, support vector machines, IoT security

中图分类号: